Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Try to Evaluate | Multivariate Linear Regression
Explore the Linear Regression Using Python

Veeg om het menu te tonen

book
Try to Evaluate

Let’s see which model is better using the metrics we already know.

MSE:

123
from sklearn.metrics import mean_squared_error print(mean_squared_error(Y_test, y_test_predicted).round(2)) print(mean_squared_error(Y_test, y_test_predicted2).round(2))
copy

MAE:

123
from sklearn.metrics import mean_absolute_error print(mean_absolute_error(Y_test, y_test_predicted).round(2)) print(mean_absolute_error(Y_test, y_test_predicted2).round(2))
copy

R-squared:

123
from sklearn.metrics import r2_score print(r2_score(Y_test, y_test_predicted).round(2)) print(r2_score(Y_test, y_test_predicted2).round(2))
copy

As a general rule, the more features a model includes, the lower the MSE (RMSE) and MAE will be. However, be careful about including too many features. Some of them may be extremely random, degrading the model's interpretability.

Taak

Swipe to start coding

Let’s evaluate the model from the previous task:

  1. [Line #30] Import mean_squared_error for calculating metrics from scikit.metrics.
  2. [Line #31] Find MSE using method mean_squared_error() and Y_test, y_test_predicted2 as the parameters, assign it to the variable MSE, round the result to second digit.
  3. [Line #32] Print the variable MSE.
  4. [Line #35] Import r2_score from scikit.metrics.
  5. [Line #36] Find R-squared and assign it to the variable r_squared, round the result to second digit.
  6. [Line #37] Print the variable r_squared.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 5. Hoofdstuk 2
single

single

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

close

Awesome!

Completion rate improved to 4.76

book
Try to Evaluate

Let’s see which model is better using the metrics we already know.

MSE:

123
from sklearn.metrics import mean_squared_error print(mean_squared_error(Y_test, y_test_predicted).round(2)) print(mean_squared_error(Y_test, y_test_predicted2).round(2))
copy

MAE:

123
from sklearn.metrics import mean_absolute_error print(mean_absolute_error(Y_test, y_test_predicted).round(2)) print(mean_absolute_error(Y_test, y_test_predicted2).round(2))
copy

R-squared:

123
from sklearn.metrics import r2_score print(r2_score(Y_test, y_test_predicted).round(2)) print(r2_score(Y_test, y_test_predicted2).round(2))
copy

As a general rule, the more features a model includes, the lower the MSE (RMSE) and MAE will be. However, be careful about including too many features. Some of them may be extremely random, degrading the model's interpretability.

Taak

Swipe to start coding

Let’s evaluate the model from the previous task:

  1. [Line #30] Import mean_squared_error for calculating metrics from scikit.metrics.
  2. [Line #31] Find MSE using method mean_squared_error() and Y_test, y_test_predicted2 as the parameters, assign it to the variable MSE, round the result to second digit.
  3. [Line #32] Print the variable MSE.
  4. [Line #35] Import r2_score from scikit.metrics.
  5. [Line #36] Find R-squared and assign it to the variable r_squared, round the result to second digit.
  6. [Line #37] Print the variable r_squared.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

close

Awesome!

Completion rate improved to 4.76

Veeg om het menu te tonen

some-alt