Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge: Evaluating the Perceptron | Neural Network from Scratch
Introduction to Neural Networks
course content

Cursusinhoud

Introduction to Neural Networks

Introduction to Neural Networks

1. Concept of Neural Network
2. Neural Network from Scratch
3. Conclusion

book
Challenge: Evaluating the Perceptron

To evaluate the previously created perceptron, you will use a dataset containing two input features and two distinct classes (0 and 1):

This dataset is balanced, with 500 samples from class 1 and 500 samples from class 0. Therefore, accuracy is a sufficient metric for evaluation in this case, which can be calculated using the accuracy_score() function:

python

y_true represents the actual labels, while y_pred represents the predicted labels.

The dataset is stored in perceptron.py as two NumPy arrays: X (input features) and y (corresponding labels), so they will be simply imported. This file also contains model, which is the instance of the Perceptron class you previously created.

Taak

Swipe to start coding

Obtain predictions from the trained model and evaluate its performance:

  1. Split the dataset into training (80%) and testing (20%) sets.
  2. Train the model for 10 epochs with a learning rate of 0.01.
  3. Obtain predictions for all examples in the test set.
  4. Calculate the accuracy by comparing the predicted labels with the actual test labels.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 12
toggle bottom row

book
Challenge: Evaluating the Perceptron

To evaluate the previously created perceptron, you will use a dataset containing two input features and two distinct classes (0 and 1):

This dataset is balanced, with 500 samples from class 1 and 500 samples from class 0. Therefore, accuracy is a sufficient metric for evaluation in this case, which can be calculated using the accuracy_score() function:

python

y_true represents the actual labels, while y_pred represents the predicted labels.

The dataset is stored in perceptron.py as two NumPy arrays: X (input features) and y (corresponding labels), so they will be simply imported. This file also contains model, which is the instance of the Perceptron class you previously created.

Taak

Swipe to start coding

Obtain predictions from the trained model and evaluate its performance:

  1. Split the dataset into training (80%) and testing (20%) sets.
  2. Train the model for 10 epochs with a learning rate of 0.01.
  3. Obtain predictions for all examples in the test set.
  4. Calculate the accuracy by comparing the predicted labels with the actual test labels.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 12
Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Onze excuses dat er iets mis is gegaan. Wat is er gebeurd?
some-alt