Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Leer Challenge: Implement and Compare Root-Finding Methods | Core Numerical Algorithms
Numerical Methods for Scientific Computing with Python

bookChallenge: Implement and Compare Root-Finding Methods

You will implement two classic numerical methods for finding roots of equations of the form:

f(x)=0f(x) = 0

Because many equations cannot be solved analytically, numerical root-finding methods are widely used in scientific computing and engineering to approximate solutions.

Methods to Implement

Bisection Method

  • Requires an interval ([a,b][a, b]) where the function changes sign.
  • Repeatedly halves the interval to narrow down the root.
  • Guaranteed to converge, but relatively slow compared to other methods.

Newton-Raphson Method

  • Uses the derivative of the function.
  • Starts from an initial guess and iteratively refines the solution.
  • Converges faster, but may fail if the derivative is zero or the initial guess is poor.
Taak

Swipe to start coding

You must:

  • Implement both root-finding methods.
  • Stop the iteration when: the approximation error is less than or equal to tol or the maximum number of iterations max_iter is reached.
  • Return:
    • The estimated root
    • The number of iterations used to reach the result.

Oplossing

Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 4
single

single

Vraag AI

expand

Vraag AI

ChatGPT

Vraag wat u wilt of probeer een van de voorgestelde vragen om onze chat te starten.

close

bookChallenge: Implement and Compare Root-Finding Methods

Veeg om het menu te tonen

You will implement two classic numerical methods for finding roots of equations of the form:

f(x)=0f(x) = 0

Because many equations cannot be solved analytically, numerical root-finding methods are widely used in scientific computing and engineering to approximate solutions.

Methods to Implement

Bisection Method

  • Requires an interval ([a,b][a, b]) where the function changes sign.
  • Repeatedly halves the interval to narrow down the root.
  • Guaranteed to converge, but relatively slow compared to other methods.

Newton-Raphson Method

  • Uses the derivative of the function.
  • Starts from an initial guess and iteratively refines the solution.
  • Converges faster, but may fail if the derivative is zero or the initial guess is poor.
Taak

Swipe to start coding

You must:

  • Implement both root-finding methods.
  • Stop the iteration when: the approximation error is less than or equal to tol or the maximum number of iterations max_iter is reached.
  • Return:
    • The estimated root
    • The number of iterations used to reach the result.

Oplossing

Switch to desktopSchakel over naar desktop voor praktijkervaringGa verder vanaf waar je bent met een van de onderstaande opties
Was alles duidelijk?

Hoe kunnen we het verbeteren?

Bedankt voor je feedback!

Sectie 2. Hoofdstuk 4
single

single

some-alt