Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Challenge: One-Class SVM for Novelty Detection | Kernel-Based Methods
Outlier and Novelty Detection in Practice

bookChallenge: One-Class SVM for Novelty Detection

Tarefa

Swipe to start coding

You are given a 2D dataset of normal points and a few anomalies. Your task is to train a One-Class SVM model to detect novelties, visualize prediction results, and print anomaly proportions.

Follow these steps:

  1. Import and initialize OneClassSVM from sklearn.svm.
    • Use kernel='rbf', gamma=0.1, nu=0.05.
  2. Fit the model on normal data only (X_train).
  3. Predict labels for test data (X_test).
    • Label meaning: 1 → normal, -1 → novel/anomalous.
  4. Compute the fraction of anomalies in X_test.
  5. Print:
    • Shapes of train/test sets.
    • Number and fraction of anomalies detected.

Solução

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 5. Capítulo 3
single

single

Pergunte à IA

expand

Pergunte à IA

ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

Suggested prompts:

Can you explain this in simpler terms?

What are the main takeaways from this?

Can you give me an example?

close

Awesome!

Completion rate improved to 4.55

bookChallenge: One-Class SVM for Novelty Detection

Deslize para mostrar o menu

Tarefa

Swipe to start coding

You are given a 2D dataset of normal points and a few anomalies. Your task is to train a One-Class SVM model to detect novelties, visualize prediction results, and print anomaly proportions.

Follow these steps:

  1. Import and initialize OneClassSVM from sklearn.svm.
    • Use kernel='rbf', gamma=0.1, nu=0.05.
  2. Fit the model on normal data only (X_train).
  3. Predict labels for test data (X_test).
    • Label meaning: 1 → normal, -1 → novel/anomalous.
  4. Compute the fraction of anomalies in X_test.
  5. Print:
    • Shapes of train/test sets.
    • Number and fraction of anomalies detected.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 5. Capítulo 3
single

single

some-alt