Conteúdo do Curso
Algorithms and Data Structures Overview
Algorithms and Data Structures Overview
BST Traversal
Basically, there are three methods of tree traversal: pre-order, in-order, and post-order traversal. The difference between the three methods is in the order of elements. Let's see how we achieve this in code.
In this chapter we will work with the following tree:
The pre-order traversal
The pre-order traversal yields the natural ordering. First, we visit the root node and then recursively each subtree's left and right subtrees.
class Tree: def __init__(self, value, left=None, right=None): self.value = value self.left = left self.right = right root = Tree(26, left=Tree(12, left=Tree(7), right=Tree(24)), right=Tree(52, left=Tree(39), right=Tree(85))) # The pre-order traversal yields the natural ordering of the elements in the tree def pre_order_traversal(subtree_root): # Initialize an empty string to store the node values nodes = [] # Define the recursive function to traverse the tree def traverse(node): # If the node is not None, append its value to the list if node is not None: nodes.append(str(node.value)) # Recursively traverse the left and right subtrees traverse(node.left) traverse(node.right) # Start the traversal from the root traverse(subtree_root) # Join the node values with the arrow separator result = ' -> '.join(nodes) return result # Perform pre-order traversal and print the result print(pre_order_traversal(root))
We put the append
statement before the recursive calls to achieve this.
The in-order traversal
The in-order traversal is probably the most common, as it yields the sorted order of the elements in the tree.
class Tree: def __init__(self, value, left=None, right=None): self.value = value self.left = left self.right = right root = Tree(26, left=Tree(12, left=Tree(7), right=Tree(24)), right=Tree(52, left=Tree(39), right=Tree(85 ))) # The in-order traversal yields the sorted order of the elements in the tree def in_order_traversal(subtree_root): # Initialize an empty string to store the node values nodes = [] # Define the recursive function to traverse the tree def traverse(node): # If the node is not None, recursively traverse the left subtree if node.left: traverse(node.left) # Append the node value to the list nodes.append(str(node.value)) # If the node is not None, recursively traverse the right subtree if node.right: traverse(node.right) # Start the traversal from the root traverse(subtree_root) # Join the node values with the arrow separator result = ' -> '.join(nodes) return result # Perform in-order traversal and print the result print(in_order_traversal(root))
When implementing an in-order traversal, we put the append
statement in the middle between two recursive calls on the left and the right subtrees.
The post-order traversal
The third way to traverse a Binary Search Tree is to use the post-order traversal. The post-order traversal algorithm first visits the left and the right subtree and then visits the root node for each subtree in the initial tree.
class Tree: def __init__(self, value, left=None, right=None): self.value = value self.left = left self.right = right root = Tree(26, left=Tree(12, left=Tree(7), right=Tree(24)), right=Tree(52, left=Tree(39), right=Tree(85 ))) # The post-order traversal prints the elements in order from bottom to the top # from left to the right def post_order_traversal(subtree_root): # Initialize an empty string to store the node values nodes = [] # Define the recursive function to traverse the tree def traverse(node): # If the node is not None, recursively traverse the left subtree if node.left: traverse(node.left) # If the node is not None, recursively traverse the right subtree if node.right: traverse(node.right) # Append the node value to the list nodes.append(str(node.value)) # Start the traversal from the root traverse(subtree_root) # Join the node values with the arrow separator result = ' -> '.join(nodes) return result # Perform post-order traversal and print the result print(post_order_traversal(root))
We append the nodes after the recursive calls to implement the post-order traversal.
Obrigado pelo seu feedback!