Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Challenge: Flag Duplicate Entries | Handling Missing and Duplicate Data
Python for Data Cleaning

bookChallenge: Flag Duplicate Entries

In many real-world data cleaning scenarios, you may want to flag duplicate entries rather than remove them right away. Flagging gives you the flexibility to review duplicates, analyze their patterns, and make informed decisions about which ones to keep or discard. For instance, in customer databases, you may want to investigate why duplicates occur before deletion, or in transactional data, you might need to audit the records before any removal. By marking duplicates, you can also generate reports, track data quality issues, and collaborate with others on resolution strategies without losing potentially valuable information.

123456789
import pandas as pd data = { "name": ["Alice", "Bob", "Alice", "Charlie", "Bob"], "age": [25, 30, 25, 35, 30] } df = pd.DataFrame(data) print(df)
copy
Tarefa

Swipe to start coding

Write a function that adds a new column called is_duplicate to the DataFrame. Each row in this column should be True if the row is a duplicate of a previous row (based on all columns), and False otherwise. The function must return the modified DataFrame.

Solução

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 2. Capítulo 6
single

single

Pergunte à IA

expand

Pergunte à IA

ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

close

Awesome!

Completion rate improved to 5.56

bookChallenge: Flag Duplicate Entries

Deslize para mostrar o menu

In many real-world data cleaning scenarios, you may want to flag duplicate entries rather than remove them right away. Flagging gives you the flexibility to review duplicates, analyze their patterns, and make informed decisions about which ones to keep or discard. For instance, in customer databases, you may want to investigate why duplicates occur before deletion, or in transactional data, you might need to audit the records before any removal. By marking duplicates, you can also generate reports, track data quality issues, and collaborate with others on resolution strategies without losing potentially valuable information.

123456789
import pandas as pd data = { "name": ["Alice", "Bob", "Alice", "Charlie", "Bob"], "age": [25, 30, 25, 35, 30] } df = pd.DataFrame(data) print(df)
copy
Tarefa

Swipe to start coding

Write a function that adds a new column called is_duplicate to the DataFrame. Each row in this column should be True if the row is a duplicate of a previous row (based on all columns), and False otherwise. The function must return the modified DataFrame.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 2. Capítulo 6
single

single

some-alt