Managing Duplicate Data
Duplicate data is a common issue in real-world datasets. Duplicates can arise for several reasons: manual data entry errors; merging datasets from multiple sources; or system glitches that cause repeated records. The presence of duplicate rows can distort your analysis by inflating counts; skewing statistical summaries; and leading to incorrect conclusions. Removing duplicates is a crucial step to ensure the accuracy and reliability of your data-driven insights.
12345678910111213141516171819import pandas as pd # Sample DataFrame with duplicate rows data = { "name": ["Alice", "Bob", "Alice", "David", "Bob"], "age": [25, 30, 25, 22, 30], "city": ["New York", "Paris", "New York", "London", "Paris"] } df = pd.DataFrame(data) # Identify duplicate rows duplicates = df.duplicated() print("Duplicated rows:") print(duplicates) # Remove duplicate rows df_no_duplicates = df.drop_duplicates() print("\nDataFrame after removing duplicates:") print(df_no_duplicates)
1. What does the duplicated() method return?
2. How does drop_duplicates() affect the original DataFrame by default?
Obrigado pelo seu feedback!
Pergunte à IA
Pergunte à IA
Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo
Awesome!
Completion rate improved to 5.56
Managing Duplicate Data
Deslize para mostrar o menu
Duplicate data is a common issue in real-world datasets. Duplicates can arise for several reasons: manual data entry errors; merging datasets from multiple sources; or system glitches that cause repeated records. The presence of duplicate rows can distort your analysis by inflating counts; skewing statistical summaries; and leading to incorrect conclusions. Removing duplicates is a crucial step to ensure the accuracy and reliability of your data-driven insights.
12345678910111213141516171819import pandas as pd # Sample DataFrame with duplicate rows data = { "name": ["Alice", "Bob", "Alice", "David", "Bob"], "age": [25, 30, 25, 22, 30], "city": ["New York", "Paris", "New York", "London", "Paris"] } df = pd.DataFrame(data) # Identify duplicate rows duplicates = df.duplicated() print("Duplicated rows:") print(duplicates) # Remove duplicate rows df_no_duplicates = df.drop_duplicates() print("\nDataFrame after removing duplicates:") print(df_no_duplicates)
1. What does the duplicated() method return?
2. How does drop_duplicates() affect the original DataFrame by default?
Obrigado pelo seu feedback!