Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Challenge: Standardize Categorical Values | Ensuring Data Consistency and Correctness
Python for Data Cleaning

bookChallenge: Standardize Categorical Values

When working with real-world data, you often encounter categorical values that are meant to represent the same thing but are written in different ways. For example, a survey might record responses such as Yes, yes, and YES in the same column. These inconsistencies can cause problems when you try to analyze or summarize your data, since Python and pandas treat these as distinct values. Standardizing these entries is essential to ensure your data is consistent and your results are accurate.

1234567
import pandas as pd data = { "Response": ["Yes", "no", "YES", "No", "yes", "NO", "nO", "YeS"] } df = pd.DataFrame(data) print(df)
copy
Tarefa

Swipe to start coding

Write a function that standardizes all values in a specified column of a DataFrame to lowercase.

Your function must:

  • Modify the DataFrame so that every value in the given column is converted to lowercase.
  • Return the modified DataFrame.

Solução

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 3. Capítulo 3
single

single

Pergunte à IA

expand

Pergunte à IA

ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

Suggested prompts:

How can I standardize the values in the 'Response' column?

Why is it important to clean categorical data before analysis?

Can you show me how to count the number of 'Yes' and 'No' responses after standardizing?

close

Awesome!

Completion rate improved to 5.56

bookChallenge: Standardize Categorical Values

Deslize para mostrar o menu

When working with real-world data, you often encounter categorical values that are meant to represent the same thing but are written in different ways. For example, a survey might record responses such as Yes, yes, and YES in the same column. These inconsistencies can cause problems when you try to analyze or summarize your data, since Python and pandas treat these as distinct values. Standardizing these entries is essential to ensure your data is consistent and your results are accurate.

1234567
import pandas as pd data = { "Response": ["Yes", "no", "YES", "No", "yes", "NO", "nO", "YeS"] } df = pd.DataFrame(data) print(df)
copy
Tarefa

Swipe to start coding

Write a function that standardizes all values in a specified column of a DataFrame to lowercase.

Your function must:

  • Modify the DataFrame so that every value in the given column is converted to lowercase.
  • Return the modified DataFrame.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 3. Capítulo 3
single

single

some-alt