Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Challenge: Remove Whitespace from Strings | Foundations of Data Cleaning
Python for Data Cleaning

bookChallenge: Remove Whitespace from Strings

When working with categorical data in a DataFrame, extra whitespace at the beginning or end of string values can cause serious inconsistencies. For example, the values "apple", " apple", and "apple " may look the same to you, but Python treats them as different strings. This can lead to problems when grouping, filtering, or comparing data, and may result in incorrect analysis or missed patterns. Cleaning up these inconsistencies by stripping whitespace is a crucial first step in preparing your data for analysis.

12345678910
import pandas as pd data = { "Fruit": [" apple", "banana ", " cherry ", "date"], "Color": [" red", "yellow ", " red ", "brown"], "Count": [10, 5, 7, 3] } df = pd.DataFrame(data) print(df)
copy
Tarefa

Swipe to start coding

Write a function that removes leading and trailing whitespace from all string columns in a DataFrame.

  • The function must return a new DataFrame with the same columns as the input.
  • All leading and trailing whitespace must be removed from every string value in columns with string data type.
  • Non-string columns must remain unchanged.

Solução

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 1. Capítulo 5
single

single

Pergunte à IA

expand

Pergunte à IA

ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

Suggested prompts:

How can I remove leading and trailing whitespace from all string columns in my DataFrame?

Why is it important to clean whitespace before analyzing categorical data?

Can you show me how the DataFrame looks after cleaning the whitespace?

close

Awesome!

Completion rate improved to 5.56

bookChallenge: Remove Whitespace from Strings

Deslize para mostrar o menu

When working with categorical data in a DataFrame, extra whitespace at the beginning or end of string values can cause serious inconsistencies. For example, the values "apple", " apple", and "apple " may look the same to you, but Python treats them as different strings. This can lead to problems when grouping, filtering, or comparing data, and may result in incorrect analysis or missed patterns. Cleaning up these inconsistencies by stripping whitespace is a crucial first step in preparing your data for analysis.

12345678910
import pandas as pd data = { "Fruit": [" apple", "banana ", " cherry ", "date"], "Color": [" red", "yellow ", " red ", "brown"], "Count": [10, 5, 7, 3] } df = pd.DataFrame(data) print(df)
copy
Tarefa

Swipe to start coding

Write a function that removes leading and trailing whitespace from all string columns in a DataFrame.

  • The function must return a new DataFrame with the same columns as the input.
  • All leading and trailing whitespace must be removed from every string value in columns with string data type.
  • Non-string columns must remain unchanged.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 1. Capítulo 5
single

single

some-alt