Conteúdo do Curso
Mathematics for Data Analysis and Modeling
Mathematics for Data Analysis and Modeling
1. Basic Mathematical Concepts and Definitions
2. Linear Algebra
Numerical Operations on Vectors and MatricesChallenge: Calculate the Matrix Multiplication ResultMatrix DeterminantScaling Factor of the Linear TransformationChallenge: Figures' Linear TransformationsInversed and Transposed MatricesSystem of Linear EquationsChallenge: Solving the Task Using SLEEigenvalues and Eigenvectors
Challenge: Figures' Linear Transformations
Tarefa
Swipe to show code editor
Linear transformations of the figures are commonly used in computer graphics. There are 2 main types of linear transformations:
- Rotation transformation rotates a figure around a specific point or axis.
- Scale transformation resizes a figure by changing its size along each axis.
Your task is to apply all these transformations to a rectangle one by one. As a result, we will have a composition of transformations:
- Сreate rotation matrix that rotates a figure by
np.pi / 3
degrees. - Create a scaling matrix with the parameters
scale_x = 2
andscale_y = 0.5
. - Apply the
rotation_matrix
to the square. - Apply the
scaling_matrix
to the result of the previous transformation.
Mude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?
Obrigado pelo seu feedback!
Seção 2. Capítulo 5
Challenge: Figures' Linear Transformations
Tarefa
Swipe to show code editor
Linear transformations of the figures are commonly used in computer graphics. There are 2 main types of linear transformations:
- Rotation transformation rotates a figure around a specific point or axis.
- Scale transformation resizes a figure by changing its size along each axis.
Your task is to apply all these transformations to a rectangle one by one. As a result, we will have a composition of transformations:
- Сreate rotation matrix that rotates a figure by
np.pi / 3
degrees. - Create a scaling matrix with the parameters
scale_x = 2
andscale_y = 0.5
. - Apply the
rotation_matrix
to the square. - Apply the
scaling_matrix
to the result of the previous transformation.
Mude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?
Obrigado pelo seu feedback!
Seção 2. Capítulo 5
Mude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo