Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Challenge: Build a Simple B-Tree | Indexing and Search Structures
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Data Structures and Algorithms for Scalable Systems

bookChallenge: Build a Simple B-Tree

Tarefa

Swipe to start coding

In this challenge, you will implement a simplified B-Tree — a balanced search tree widely used in databases and file systems.

Your task is to complete the implementation so that the tree supports:

insert(key):

  • Inserts a new key into the B-Tree.
  • Splits nodes when they overflow to maintain B-Tree properties.
  • The root must split correctly when full.
  • Insertion must always place keys in sorted order.

search(key):

  • Returns True if the key is present in the B-Tree.
  • Returns False if the key is not found.

Additional Rules:

  • The minimum degree t determines the minimum/maximum number of keys in each node.
  • You do not need to implement deletion or disk storage.
  • The tree must correctly handle multiple insertions and node splits.

Solução

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 2. Capítulo 4
single

single

Pergunte à IA

expand

Pergunte à IA

ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

close

bookChallenge: Build a Simple B-Tree

Deslize para mostrar o menu

Tarefa

Swipe to start coding

In this challenge, you will implement a simplified B-Tree — a balanced search tree widely used in databases and file systems.

Your task is to complete the implementation so that the tree supports:

insert(key):

  • Inserts a new key into the B-Tree.
  • Splits nodes when they overflow to maintain B-Tree properties.
  • The root must split correctly when full.
  • Insertion must always place keys in sorted order.

search(key):

  • Returns True if the key is present in the B-Tree.
  • Returns False if the key is not found.

Additional Rules:

  • The minimum degree t determines the minimum/maximum number of keys in each node.
  • You do not need to implement deletion or disk storage.
  • The tree must correctly handle multiple insertions and node splits.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 2. Capítulo 4
single

single

some-alt