Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Challenge: Evaluating the Model | Section
Regression with Python

bookChallenge: Evaluating the Model

In this challenge, you are given the good old housing dataset, but this time only with the 'age' feature.

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') print(df.head())
copy

Next, we'll create a scatterplot for this data:

12345678
import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') X = df['age'] y = df['price'] plt.scatter(X, y, alpha=0.4) plt.show()
copy

A straight line is a poor fit here: prices rise for both very new and very old houses. A parabola models this trend better — that’s what you will build in this challenge.

But before you start, recall the PolynomialFeatures class.

fit_transform(X) needs a 2-D array or DataFrame. Use df[['col']] or, for a 1-D array, apply .reshape(-1, 1) to convert it into 2-D.

The task is to build a Polynomial Regression of degree 2 using PolynomialFeatures and OLS.

Tarefa

Swipe to start coding

  1. Assign the X variable to a DataFrame containing column 'age'.
  2. Create an X_tilde matrix using the PolynomialFeatures class.
  3. Build and train a Polynomial Regression model.
  4. Reshape X_new to be a 2-D array.
  5. Preprocess X_new the same way as X.
  6. Print the model's parameters.

Solução

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 1. Capítulo 15
single

single

Pergunte à IA

expand

Pergunte à IA

ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

close

bookChallenge: Evaluating the Model

Deslize para mostrar o menu

In this challenge, you are given the good old housing dataset, but this time only with the 'age' feature.

1234
import pandas as pd df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') print(df.head())
copy

Next, we'll create a scatterplot for this data:

12345678
import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/b22d1166-efda-45e8-979e-6c3ecfc566fc/houses_poly.csv') X = df['age'] y = df['price'] plt.scatter(X, y, alpha=0.4) plt.show()
copy

A straight line is a poor fit here: prices rise for both very new and very old houses. A parabola models this trend better — that’s what you will build in this challenge.

But before you start, recall the PolynomialFeatures class.

fit_transform(X) needs a 2-D array or DataFrame. Use df[['col']] or, for a 1-D array, apply .reshape(-1, 1) to convert it into 2-D.

The task is to build a Polynomial Regression of degree 2 using PolynomialFeatures and OLS.

Tarefa

Swipe to start coding

  1. Assign the X variable to a DataFrame containing column 'age'.
  2. Create an X_tilde matrix using the PolynomialFeatures class.
  3. Build and train a Polynomial Regression model.
  4. Reshape X_new to be a 2-D array.
  5. Preprocess X_new the same way as X.
  6. Print the model's parameters.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 1. Capítulo 15
single

single

some-alt