Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Set Condition | Dealing With Conditions
Advanced Techniques in pandas

Set Condition

In this section, we will learn how to extract data using specific conditions, but first I want you to examine the data set we will use. It includes data on asteroids:

id name est_diameter_min est_diameter_max absolute_magnitude hazardous
0 2162635 162635 (2000 SS164) 1.198271 2.679415 16.73 False
1 2277475 277475 (2005 WK4) 0.265800 0.594347 20.00 True
2 2512244 512244 (2015 YE18) 0.722030 1.614507 17.83 False
3 3596030 (2012 BV13) 0.096506 0.215794 22.20 False
4 3667127 (2014 GE35) 0.255009 0.570217 20.09 True
  • id - Unique identifier for each asteroid;
  • name - Name given by NASA;
  • est_diameter_min - Minimum estimated diameter in kilometers;
  • est_diameter_max - Maximum estimated diameter in kilometers;
  • absolute_magnitude - Describes how light the object is;
  • hazardous - Boolean feature that shows whether asteroid is harmful or not.

You are already familiar with the .loc[] function, but here we will expand its possibilities.

One of the most useful tools is to set conditions on a column to extract specific values. So, you just put the condition of the column inside the .loc[] function. Look at the several conditions and outputs.

  • data.loc[data['est_diameter_max'] < 0.005].head() - extracts the first five rows where the column values 'est_diameter_max' are less then 0.005;
  • data.loc[data['absolute_magnitude'] >= 30].head() - extracts the first five rows where the column values 'absolute_magnitude' are greater than or equal to 30.

Your task is to choose all correct forms of setting conditions on the column 'est_diameter_min'. Please look; this column is numerical, so think about the conditions we can use with numbers.

Selecione algumas respostas corretas

Tudo estava claro?

Seção 2. Capítulo 1
course content

Conteúdo do Curso

Advanced Techniques in pandas

Set Condition

In this section, we will learn how to extract data using specific conditions, but first I want you to examine the data set we will use. It includes data on asteroids:

id name est_diameter_min est_diameter_max absolute_magnitude hazardous
0 2162635 162635 (2000 SS164) 1.198271 2.679415 16.73 False
1 2277475 277475 (2005 WK4) 0.265800 0.594347 20.00 True
2 2512244 512244 (2015 YE18) 0.722030 1.614507 17.83 False
3 3596030 (2012 BV13) 0.096506 0.215794 22.20 False
4 3667127 (2014 GE35) 0.255009 0.570217 20.09 True
  • id - Unique identifier for each asteroid;
  • name - Name given by NASA;
  • est_diameter_min - Minimum estimated diameter in kilometers;
  • est_diameter_max - Maximum estimated diameter in kilometers;
  • absolute_magnitude - Describes how light the object is;
  • hazardous - Boolean feature that shows whether asteroid is harmful or not.

You are already familiar with the .loc[] function, but here we will expand its possibilities.

One of the most useful tools is to set conditions on a column to extract specific values. So, you just put the condition of the column inside the .loc[] function. Look at the several conditions and outputs.

  • data.loc[data['est_diameter_max'] < 0.005].head() - extracts the first five rows where the column values 'est_diameter_max' are less then 0.005;
  • data.loc[data['absolute_magnitude'] >= 30].head() - extracts the first five rows where the column values 'absolute_magnitude' are greater than or equal to 30.

Your task is to choose all correct forms of setting conditions on the column 'est_diameter_min'. Please look; this column is numerical, so think about the conditions we can use with numbers.

Selecione algumas respostas corretas

Tudo estava claro?

Seção 2. Capítulo 1
some-alt