Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Checking the Column Type | Preprocessing Data
Advanced Techniques in pandas

bookChecking the Column Type

If you can come across the column 'Fare', the numbers here are separated with the - sign. It looks weird, doesn't it? We used to use . as the separator, and Python can understand numbers separated only with dots. Let's check the type of this column. You can do so using the attribute .dtypes. Look at the example with the column 'Age'.

123
import pandas as pd data = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/4bf24830-59ba-4418-969b-aaf8117d522e/titanic3.csv', index_col = 0) print(data['Age'].dtypes)
copy

Explanation:

The .dtypes syntax is simple; you just apply it to the column or to the whole data set. In our case, the type is float64.

question-icon

Output the type of the column 'Fare'.

print(data[''].)
object

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 5. Capítulo 7

Pergunte à IA

expand

Pergunte à IA

ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

Awesome!

Completion rate improved to 3.03

bookChecking the Column Type

Deslize para mostrar o menu

If you can come across the column 'Fare', the numbers here are separated with the - sign. It looks weird, doesn't it? We used to use . as the separator, and Python can understand numbers separated only with dots. Let's check the type of this column. You can do so using the attribute .dtypes. Look at the example with the column 'Age'.

123
import pandas as pd data = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/4bf24830-59ba-4418-969b-aaf8117d522e/titanic3.csv', index_col = 0) print(data['Age'].dtypes)
copy

Explanation:

The .dtypes syntax is simple; you just apply it to the column or to the whole data set. In our case, the type is float64.

question-icon

Output the type of the column 'Fare'.

print(data[''].)
object

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 5. Capítulo 7
some-alt