Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Grouping in Pandas | Pandas
Unveiling the Power of Data Manipulation with Pandas

book
Grouping in Pandas

Grouping in pandas involves dividing a DataFrame into groups based on the values in one or more columns. You can then apply a function to each group to compute a summary statistic, such as the mean, sum, or count.

To group a DataFrame in pandas, use the .groupby() method. This method accepts a column name or a list of column names and returns a groupby object.

Here is an example:

python
# Grouping by 'column_name' and calculating the mean of each group
grouped_data = df.groupby('column_name').mean()

This example demonstrates how to calculate the mean for each group formed based on the values in 'column_name'.

Tarefa

Swipe to start coding

  1. Group the data DataFrame by 'DEPARTMENT_NAME' and compute the mean, minimum, and maximum of the 'MANAGER_ID' column for each group.

Solução

# Group the data by 'DEPARTMENT_NAME' and compute necessary measures
data.groupby('DEPARTMENT_NAME').agg({'MANAGER_ID': ['mean', 'min', 'max']})

Mark tasks as Completed
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 1. Capítulo 5
some-alt