Challenge: Model Selection Workflow
Tarefa
Swipe to start coding
You are working with scikit-learn model selection tools to evaluate and compare models in a consistent way.
- Split the dataset
Xandyinto training and test sets usingtrain_test_splitwith:test_size=0.25;random_state=42.
- Create a
LogisticRegressionestimator withmax_iter=1000. - Evaluate the estimator using
cross_val_scorewithcv=3. - Create a
GridSearchCVobject namedgrid_searchwith:- the estimator;
- the parameter grid
param_grid; cv=3.
- Fit
grid_searchon the training data. - Store:
- the mean cross-validation score in
cv_mean_score; - the best parameter dictionary in
best_params.
- the mean cross-validation score in
Solução
Tudo estava claro?
Obrigado pelo seu feedback!
Seção 4. Capítulo 4
single
Pergunte à IA
Pergunte à IA
Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo
Incrível!
Completion taxa melhorada para 5.26
Challenge: Model Selection Workflow
Deslize para mostrar o menu
Tarefa
Swipe to start coding
You are working with scikit-learn model selection tools to evaluate and compare models in a consistent way.
- Split the dataset
Xandyinto training and test sets usingtrain_test_splitwith:test_size=0.25;random_state=42.
- Create a
LogisticRegressionestimator withmax_iter=1000. - Evaluate the estimator using
cross_val_scorewithcv=3. - Create a
GridSearchCVobject namedgrid_searchwith:- the estimator;
- the parameter grid
param_grid; cv=3.
- Fit
grid_searchon the training data. - Store:
- the mean cross-validation score in
cv_mean_score; - the best parameter dictionary in
best_params.
- the mean cross-validation score in
Solução
Tudo estava claro?
Obrigado pelo seu feedback!
Seção 4. Capítulo 4
single