Conteúdo do Curso
Deep Dive into the seaborn Visualization
Deep Dive into the seaborn Visualization
Ecdfplot
An ecdfplot
represents the proportion or count of observations falling below each unique value in a dataset. Compared to a histogram or density plot, it has the advantage that each observation is visualized directly, meaning that no binning or smoothing parameters need to be adjusted.
Swipe to show code editor
- Create the
ecdfplot
using theseaborn
library:
- Set the
x
parameter equals thebill_length_mm
; - Set the
hue
parameter equals the'island'
; - Add the
complementary
parameter; - Set the
stat
parameter equals the'count'
; - Set the palette equals the
'mako'
; - Set the data.
Obrigado pelo seu feedback!
Ecdfplot
An ecdfplot
represents the proportion or count of observations falling below each unique value in a dataset. Compared to a histogram or density plot, it has the advantage that each observation is visualized directly, meaning that no binning or smoothing parameters need to be adjusted.
Swipe to show code editor
- Create the
ecdfplot
using theseaborn
library:
- Set the
x
parameter equals thebill_length_mm
; - Set the
hue
parameter equals the'island'
; - Add the
complementary
parameter; - Set the
stat
parameter equals the'count'
; - Set the palette equals the
'mako'
; - Set the data.
Obrigado pelo seu feedback!
Ecdfplot
An ecdfplot
represents the proportion or count of observations falling below each unique value in a dataset. Compared to a histogram or density plot, it has the advantage that each observation is visualized directly, meaning that no binning or smoothing parameters need to be adjusted.
Swipe to show code editor
- Create the
ecdfplot
using theseaborn
library:
- Set the
x
parameter equals thebill_length_mm
; - Set the
hue
parameter equals the'island'
; - Add the
complementary
parameter; - Set the
stat
parameter equals the'count'
; - Set the palette equals the
'mako'
; - Set the data.
Obrigado pelo seu feedback!
An ecdfplot
represents the proportion or count of observations falling below each unique value in a dataset. Compared to a histogram or density plot, it has the advantage that each observation is visualized directly, meaning that no binning or smoothing parameters need to be adjusted.
Swipe to show code editor
- Create the
ecdfplot
using theseaborn
library:
- Set the
x
parameter equals thebill_length_mm
; - Set the
hue
parameter equals the'island'
; - Add the
complementary
parameter; - Set the
stat
parameter equals the'count'
; - Set the palette equals the
'mako'
; - Set the data.