Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Function array() | Getting Started with NumPy
NumPy in a Nutshell
course content

Conteúdo do Curso

NumPy in a Nutshell

NumPy in a Nutshell

1. Getting Started with NumPy
2. Dimensions in Arrays
3. Indexing and Slicing
4. Important Functions

bookFunction array()

In fact, there are various functions in NumPy for creating arrays. Now, we'll explore one of the most commonly used ones, namely np.array(). Below, you'll find an example of how to use this function:

12345678
# Importing NumPy import numpy as np # Creating array arr = np.array([1, 3, 5, 7, 9, 11, 13]) # Displaying array print(arr)
copy

Let's now determine the type of object that this function creates. We can do this using the well-known function type().

Note

The type() function takes an object of any type and returns its type. The argument can indeed be of any type: number, string, list, dictionary, tuple, function, class, module, etc.

12345678
import numpy as np arr = np.array([1, 3, 5, 7, 9, 11, 13]) # Displaying array print(arr) # Displaying the type of created array print(type(arr))
copy

We can see the type of the created array is ndarray. But what does that mean? ndarray - This object is a multidimensional homogeneous array with a predetermined number of elements.

Now it's time to practice!

Tarefa
test

Swipe to show code editor

  1. You have to create two NumPy arrays. The first one should look like this: [65, 2, 89, 5, 0, 1] and the second one should look like this: [1, 2, 3].
  2. Display these arrays on the screen.
  3. Display the type of these arrays on the screen.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 1. Capítulo 2
toggle bottom row

bookFunction array()

In fact, there are various functions in NumPy for creating arrays. Now, we'll explore one of the most commonly used ones, namely np.array(). Below, you'll find an example of how to use this function:

12345678
# Importing NumPy import numpy as np # Creating array arr = np.array([1, 3, 5, 7, 9, 11, 13]) # Displaying array print(arr)
copy

Let's now determine the type of object that this function creates. We can do this using the well-known function type().

Note

The type() function takes an object of any type and returns its type. The argument can indeed be of any type: number, string, list, dictionary, tuple, function, class, module, etc.

12345678
import numpy as np arr = np.array([1, 3, 5, 7, 9, 11, 13]) # Displaying array print(arr) # Displaying the type of created array print(type(arr))
copy

We can see the type of the created array is ndarray. But what does that mean? ndarray - This object is a multidimensional homogeneous array with a predetermined number of elements.

Now it's time to practice!

Tarefa
test

Swipe to show code editor

  1. You have to create two NumPy arrays. The first one should look like this: [65, 2, 89, 5, 0, 1] and the second one should look like this: [1, 2, 3].
  2. Display these arrays on the screen.
  3. Display the type of these arrays on the screen.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 1. Capítulo 2
toggle bottom row

bookFunction array()

In fact, there are various functions in NumPy for creating arrays. Now, we'll explore one of the most commonly used ones, namely np.array(). Below, you'll find an example of how to use this function:

12345678
# Importing NumPy import numpy as np # Creating array arr = np.array([1, 3, 5, 7, 9, 11, 13]) # Displaying array print(arr)
copy

Let's now determine the type of object that this function creates. We can do this using the well-known function type().

Note

The type() function takes an object of any type and returns its type. The argument can indeed be of any type: number, string, list, dictionary, tuple, function, class, module, etc.

12345678
import numpy as np arr = np.array([1, 3, 5, 7, 9, 11, 13]) # Displaying array print(arr) # Displaying the type of created array print(type(arr))
copy

We can see the type of the created array is ndarray. But what does that mean? ndarray - This object is a multidimensional homogeneous array with a predetermined number of elements.

Now it's time to practice!

Tarefa
test

Swipe to show code editor

  1. You have to create two NumPy arrays. The first one should look like this: [65, 2, 89, 5, 0, 1] and the second one should look like this: [1, 2, 3].
  2. Display these arrays on the screen.
  3. Display the type of these arrays on the screen.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

In fact, there are various functions in NumPy for creating arrays. Now, we'll explore one of the most commonly used ones, namely np.array(). Below, you'll find an example of how to use this function:

12345678
# Importing NumPy import numpy as np # Creating array arr = np.array([1, 3, 5, 7, 9, 11, 13]) # Displaying array print(arr)
copy

Let's now determine the type of object that this function creates. We can do this using the well-known function type().

Note

The type() function takes an object of any type and returns its type. The argument can indeed be of any type: number, string, list, dictionary, tuple, function, class, module, etc.

12345678
import numpy as np arr = np.array([1, 3, 5, 7, 9, 11, 13]) # Displaying array print(arr) # Displaying the type of created array print(type(arr))
copy

We can see the type of the created array is ndarray. But what does that mean? ndarray - This object is a multidimensional homogeneous array with a predetermined number of elements.

Now it's time to practice!

Tarefa
test

Swipe to show code editor

  1. You have to create two NumPy arrays. The first one should look like this: [65, 2, 89, 5, 0, 1] and the second one should look like this: [1, 2, 3].
  2. Display these arrays on the screen.
  3. Display the type of these arrays on the screen.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Seção 1. Capítulo 2
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
We're sorry to hear that something went wrong. What happened?
some-alt