Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Flattening | Important Functions
NumPy in a Nutshell
course content

Conteúdo do Curso

NumPy in a Nutshell

NumPy in a Nutshell

1. Getting Started with NumPy
2. Dimensions in Arrays
3. Indexing and Slicing
4. Important Functions

bookFlattening

Do you know what it means to flatten an array? Flattening is the process of transforming a multidimensional array into a one-dimensional one.

This transformation can be achieved using two different methods:

  • the first one we're already familiar with is the .reshape(-1) method with an argument of -1;
  • the other option is to use the .flatten() method.

Now, let's have a look at both of these methods in practice.

Let's see how to use the .reshape(-1) method:

123456
import numpy as np array = np.array([[12, 45, 78, 34, 0], [13, 5, 78, 3, 1]]) new_array = array.reshape(-1) print(new_array)
copy

Let's see how to use the .flatten() method:

123456
import numpy as np array = np.array([[12, 45, 78, 34, 0], [13, 5, 78, 3, 1]]) new_array = array.flatten() print(new_array)
copy

Let's practice!

Tarefa
test

Swipe to show code editor

Consider the following array:

[[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]]

You should transform it into the following array:

[1 2 3 4 5 6 7 8 9 10 11 12].

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 4. Capítulo 2
toggle bottom row

bookFlattening

Do you know what it means to flatten an array? Flattening is the process of transforming a multidimensional array into a one-dimensional one.

This transformation can be achieved using two different methods:

  • the first one we're already familiar with is the .reshape(-1) method with an argument of -1;
  • the other option is to use the .flatten() method.

Now, let's have a look at both of these methods in practice.

Let's see how to use the .reshape(-1) method:

123456
import numpy as np array = np.array([[12, 45, 78, 34, 0], [13, 5, 78, 3, 1]]) new_array = array.reshape(-1) print(new_array)
copy

Let's see how to use the .flatten() method:

123456
import numpy as np array = np.array([[12, 45, 78, 34, 0], [13, 5, 78, 3, 1]]) new_array = array.flatten() print(new_array)
copy

Let's practice!

Tarefa
test

Swipe to show code editor

Consider the following array:

[[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]]

You should transform it into the following array:

[1 2 3 4 5 6 7 8 9 10 11 12].

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 4. Capítulo 2
toggle bottom row

bookFlattening

Do you know what it means to flatten an array? Flattening is the process of transforming a multidimensional array into a one-dimensional one.

This transformation can be achieved using two different methods:

  • the first one we're already familiar with is the .reshape(-1) method with an argument of -1;
  • the other option is to use the .flatten() method.

Now, let's have a look at both of these methods in practice.

Let's see how to use the .reshape(-1) method:

123456
import numpy as np array = np.array([[12, 45, 78, 34, 0], [13, 5, 78, 3, 1]]) new_array = array.reshape(-1) print(new_array)
copy

Let's see how to use the .flatten() method:

123456
import numpy as np array = np.array([[12, 45, 78, 34, 0], [13, 5, 78, 3, 1]]) new_array = array.flatten() print(new_array)
copy

Let's practice!

Tarefa
test

Swipe to show code editor

Consider the following array:

[[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]]

You should transform it into the following array:

[1 2 3 4 5 6 7 8 9 10 11 12].

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Do you know what it means to flatten an array? Flattening is the process of transforming a multidimensional array into a one-dimensional one.

This transformation can be achieved using two different methods:

  • the first one we're already familiar with is the .reshape(-1) method with an argument of -1;
  • the other option is to use the .flatten() method.

Now, let's have a look at both of these methods in practice.

Let's see how to use the .reshape(-1) method:

123456
import numpy as np array = np.array([[12, 45, 78, 34, 0], [13, 5, 78, 3, 1]]) new_array = array.reshape(-1) print(new_array)
copy

Let's see how to use the .flatten() method:

123456
import numpy as np array = np.array([[12, 45, 78, 34, 0], [13, 5, 78, 3, 1]]) new_array = array.flatten() print(new_array)
copy

Let's practice!

Tarefa
test

Swipe to show code editor

Consider the following array:

[[[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]]

You should transform it into the following array:

[1 2 3 4 5 6 7 8 9 10 11 12].

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Seção 4. Capítulo 2
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
We're sorry to hear that something went wrong. What happened?
some-alt