Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Extracting Data from CSV and JSON Files | Data Extraction Techniques
Data Pipelines with Python

bookExtracting Data from CSV and JSON Files

12345
import pandas as pd # Read a CSV file and display its contents df = pd.read_csv("data/sample_data.csv") print(df.head())
copy

Reading data from CSV files is a common task in data pipelines. You use the read_csv function from the pandas library to load the file into a DataFrame. This function automatically detects the delimiter (default is comma), but you can specify a different delimiter using the delimiter or sep parameter if your file uses something else, such as a tab or semicolon. File encoding is another important aspect; most CSV files use UTF-8 encoding, but you might encounter files with different encodings like ISO-8859-1. You can specify the encoding with the encoding parameter. If you try to read a file with the wrong encoding, you may see errors or garbled text. Error handling is crucial during extraction. The read_csv function provides options like error_bad_lines=False (deprecated in newer pandas versions) or on_bad_lines="skip" to skip problematic rows, and warn_bad_lines=True to display warnings. Always check the documentation for your pandas version to ensure you use the correct parameters.

123456789101112
import pandas as pd # Read a JSON file with nested structures df = pd.read_json("data/nested_data.json") # If the JSON file contains deeply nested data, use json_normalize if "records" in df.columns: from pandas import json_normalize nested_df = json_normalize(df["records"]) print(nested_df.head()) else: print(df.head())
copy
question mark

Which statements correctly describe how to read CSV and JSON files using pandas

Select the correct answer

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 2. Capítulo 1

Pergunte à IA

expand

Pergunte à IA

ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

Suggested prompts:

How can I handle errors when reading CSV files with pandas?

Can you explain how to specify a different delimiter or encoding in read_csv?

What should I do if my JSON file has multiple levels of nesting?

bookExtracting Data from CSV and JSON Files

Deslize para mostrar o menu

12345
import pandas as pd # Read a CSV file and display its contents df = pd.read_csv("data/sample_data.csv") print(df.head())
copy

Reading data from CSV files is a common task in data pipelines. You use the read_csv function from the pandas library to load the file into a DataFrame. This function automatically detects the delimiter (default is comma), but you can specify a different delimiter using the delimiter or sep parameter if your file uses something else, such as a tab or semicolon. File encoding is another important aspect; most CSV files use UTF-8 encoding, but you might encounter files with different encodings like ISO-8859-1. You can specify the encoding with the encoding parameter. If you try to read a file with the wrong encoding, you may see errors or garbled text. Error handling is crucial during extraction. The read_csv function provides options like error_bad_lines=False (deprecated in newer pandas versions) or on_bad_lines="skip" to skip problematic rows, and warn_bad_lines=True to display warnings. Always check the documentation for your pandas version to ensure you use the correct parameters.

123456789101112
import pandas as pd # Read a JSON file with nested structures df = pd.read_json("data/nested_data.json") # If the JSON file contains deeply nested data, use json_normalize if "records" in df.columns: from pandas import json_normalize nested_df = json_normalize(df["records"]) print(nested_df.head()) else: print(df.head())
copy
question mark

Which statements correctly describe how to read CSV and JSON files using pandas

Select the correct answer

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 2. Capítulo 1
some-alt