Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Challenge: Solving Nonlinear Equations | Optimization and Root Finding
Introduction to SciPy

bookChallenge: Solving Nonlinear Equations

In many scientific and engineering applications, you often encounter nonlinear equations that cannot be solved analytically and require numerical methods. The scipy.optimize module provides powerful algorithms to find the roots of such equations, enabling you to model and analyze real-world systems. In this challenge, you will apply your understanding of root-finding by solving a nonlinear equation that represents a physical process using scipy.optimize.root.

Tarefa

Swipe to start coding

Solve the nonlinear equation x^3 - 2x^2 + x - 1 = 0 to model a physical process. Use the provided physical_process_equation function for the equation.

  • Use scipy.optimize.root to numerically find a root of the equation, starting from an initial guess of 2.0.
  • Return the root value as a float from the solve_nonlinear_equation function.

Remember to extract the root from the result object using .x[0] and convert it to a float before returning. Make sure your function returns a float, not an array.

Solução

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 3. Capítulo 5
single

single

Pergunte à IA

expand

Pergunte à IA

ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

Suggested prompts:

What is an example of a nonlinear equation I can solve with scipy.optimize.root?

Can you explain how to use scipy.optimize.root step by step?

What are some common physical processes that require solving nonlinear equations?

close

bookChallenge: Solving Nonlinear Equations

Deslize para mostrar o menu

In many scientific and engineering applications, you often encounter nonlinear equations that cannot be solved analytically and require numerical methods. The scipy.optimize module provides powerful algorithms to find the roots of such equations, enabling you to model and analyze real-world systems. In this challenge, you will apply your understanding of root-finding by solving a nonlinear equation that represents a physical process using scipy.optimize.root.

Tarefa

Swipe to start coding

Solve the nonlinear equation x^3 - 2x^2 + x - 1 = 0 to model a physical process. Use the provided physical_process_equation function for the equation.

  • Use scipy.optimize.root to numerically find a root of the equation, starting from an initial guess of 2.0.
  • Return the root value as a float from the solve_nonlinear_equation function.

Remember to extract the root from the result object using .x[0] and convert it to a float before returning. Make sure your function returns a float, not an array.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 3. Capítulo 5
single

single

some-alt