Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Noções Básicas de PLN | Análise de Sentimento
Introdução às RNNs

bookNoções Básicas de PLN

NLP enables machines to read, understand, and generate human language. By applying various algorithms and models, NLP systems can perform tasks such as speech recognition, translation, summarization, and sentiment analysis.

Tarefas principais em NLP:

  • Text preprocessing: involves cleaning the text data to make it suitable for analysis. Common preprocessing steps include tokenization, removing stop words, and stemming or lemmatization;
  • Text classification: assigning categories or labels to text data. Sentiment analysis is one example, where the goal is to classify text as positive, negative, or neutral;
  • Named entity recognition (NER): identifying and classifying entities in text, such as names of people, organizations, locations, and dates;
  • Part-of-speech tagging: determining the grammatical structure of a sentence by identifying parts of speech like nouns, verbs, adjectives, etc.;
  • Sentiment analysis: the primary task of this section. Sentiment analysis involves determining the sentiment or emotion expressed in a piece of text. This is commonly used in analyzing social media posts, customer reviews, and feedback, and is typically performed using machine learning models trained on labeled data.

Em resumo, NLP é uma tecnologia fundamental que permite às máquinas processar e compreender a linguagem humana. Ao dominar os conceitos básicos de NLP, como pré-processamento de texto, classificação e embeddings, você estabelece a base para tarefas mais avançadas como análise de sentimento e além.

question mark

Qual das alternativas a seguir é uma tarefa principal em NLP?

Select the correct answer

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 4. Capítulo 1

Pergunte à IA

expand

Pergunte à IA

ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

Awesome!

Completion rate improved to 4.55

bookNoções Básicas de PLN

Deslize para mostrar o menu

NLP enables machines to read, understand, and generate human language. By applying various algorithms and models, NLP systems can perform tasks such as speech recognition, translation, summarization, and sentiment analysis.

Tarefas principais em NLP:

  • Text preprocessing: involves cleaning the text data to make it suitable for analysis. Common preprocessing steps include tokenization, removing stop words, and stemming or lemmatization;
  • Text classification: assigning categories or labels to text data. Sentiment analysis is one example, where the goal is to classify text as positive, negative, or neutral;
  • Named entity recognition (NER): identifying and classifying entities in text, such as names of people, organizations, locations, and dates;
  • Part-of-speech tagging: determining the grammatical structure of a sentence by identifying parts of speech like nouns, verbs, adjectives, etc.;
  • Sentiment analysis: the primary task of this section. Sentiment analysis involves determining the sentiment or emotion expressed in a piece of text. This is commonly used in analyzing social media posts, customer reviews, and feedback, and is typically performed using machine learning models trained on labeled data.

Em resumo, NLP é uma tecnologia fundamental que permite às máquinas processar e compreender a linguagem humana. Ao dominar os conceitos básicos de NLP, como pré-processamento de texto, classificação e embeddings, você estabelece a base para tarefas mais avançadas como análise de sentimento e além.

question mark

Qual das alternativas a seguir é uma tarefa principal em NLP?

Select the correct answer

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 4. Capítulo 1
some-alt