Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
How Much Do We Earn | Becoming an Analyst
Introduction to Python for Data Analysis
course content

Conteúdo do Curso

Introduction to Python for Data Analysis

Introduction to Python for Data Analysis

1. Introduction to Python 1/2
2. Introduction to Python 2/2
3. Explore Dataset
4. Becoming an Analyst

bookHow Much Do We Earn

You may recognize the column 'money_spent' that corresponds to the amount of money the user spent and gained. In this chapter, we will find if there is any dependence between the day of the week and the amount of money we have!

But firstly, recall some functions:

Group Data:

12
df = df[['columns which we group']] .groupby(['columns on which we group'])
copy

Visualization:

1234
sns.barplot(df = DataFrame, x = 'column for x-axis', y = 'column for y-axis') plt.show()
copy

Tarefa

  1. Group data:
  • Extract only columns 'day', 'money_spent' from the df DataFrame.
  • Group by the column 'day'.
  • Apply .mean() function to grouped df.
  • Apply .reset_index() function.
  1. Create a barplot:
  • Use df as the first argument.
  • Use column 'day' for x-axis.
  • Use the column 'money_spent' for the y-axis.
  1. Output barplot.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 4. Capítulo 8
toggle bottom row

bookHow Much Do We Earn

You may recognize the column 'money_spent' that corresponds to the amount of money the user spent and gained. In this chapter, we will find if there is any dependence between the day of the week and the amount of money we have!

But firstly, recall some functions:

Group Data:

12
df = df[['columns which we group']] .groupby(['columns on which we group'])
copy

Visualization:

1234
sns.barplot(df = DataFrame, x = 'column for x-axis', y = 'column for y-axis') plt.show()
copy

Tarefa

  1. Group data:
  • Extract only columns 'day', 'money_spent' from the df DataFrame.
  • Group by the column 'day'.
  • Apply .mean() function to grouped df.
  • Apply .reset_index() function.
  1. Create a barplot:
  • Use df as the first argument.
  • Use column 'day' for x-axis.
  • Use the column 'money_spent' for the y-axis.
  1. Output barplot.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 4. Capítulo 8
toggle bottom row

bookHow Much Do We Earn

You may recognize the column 'money_spent' that corresponds to the amount of money the user spent and gained. In this chapter, we will find if there is any dependence between the day of the week and the amount of money we have!

But firstly, recall some functions:

Group Data:

12
df = df[['columns which we group']] .groupby(['columns on which we group'])
copy

Visualization:

1234
sns.barplot(df = DataFrame, x = 'column for x-axis', y = 'column for y-axis') plt.show()
copy

Tarefa

  1. Group data:
  • Extract only columns 'day', 'money_spent' from the df DataFrame.
  • Group by the column 'day'.
  • Apply .mean() function to grouped df.
  • Apply .reset_index() function.
  1. Create a barplot:
  • Use df as the first argument.
  • Use column 'day' for x-axis.
  • Use the column 'money_spent' for the y-axis.
  1. Output barplot.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

You may recognize the column 'money_spent' that corresponds to the amount of money the user spent and gained. In this chapter, we will find if there is any dependence between the day of the week and the amount of money we have!

But firstly, recall some functions:

Group Data:

12
df = df[['columns which we group']] .groupby(['columns on which we group'])
copy

Visualization:

1234
sns.barplot(df = DataFrame, x = 'column for x-axis', y = 'column for y-axis') plt.show()
copy

Tarefa

  1. Group data:
  • Extract only columns 'day', 'money_spent' from the df DataFrame.
  • Group by the column 'day'.
  • Apply .mean() function to grouped df.
  • Apply .reset_index() function.
  1. Create a barplot:
  • Use df as the first argument.
  • Use column 'day' for x-axis.
  • Use the column 'money_spent' for the y-axis.
  1. Output barplot.

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Seção 4. Capítulo 8
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
some-alt