Operações com Matrizes em Python
1. Adição e Subtração
Duas matrizes A e B com o mesmo formato podem ser somadas:
123456789import numpy as np A = np.array([[1, 2], [5, 6]]) B = np.array([[3, 4], [7, 8]]) C = A + B print(f'C:\n{C}') # C = [[4, 6], [12, 14]]
2. Regras de Multiplicação
A multiplicação de matrizes não é elemento a elemento.
Regra: se A possui formato (n,m) e B possui formato (m,l), então o resultado terá formato (n,l).
1234567891011121314151617181920import numpy as np # Example random matrix 3x2 A = np.array([[1, 2], [3, 4], [5, 6]]) print(f'A:\n{A}') # Example random matrix 2x4 B = np.array([[11, 12, 13, 14], [15, 16, 17, 18]]) print(f'B:\n{B}') # product shape (3, 4) product = np.dot(A, B) print(f'np.dot(A, B):\n{product}') # or equivalently product = A @ B print(f'A @ B:\n{product}')
3. Transposta
A transposta inverte linhas e colunas.
Regra geral: se A é (n×m), então AT é (m×n).
1234567import numpy as np A = np.array([[1, 2, 3], [4, 5, 6]]) A_T = A.T # Transpose of A print(f'A_T:\n{A_T}')
4. Inversa de uma Matriz
Uma matriz A possui uma inversa A−1 se:
A⋅A−1=IOnde I é a matriz identidade.
Nem todas as matrizes possuem inversa. Uma matriz deve ser quadrada e de posto completo.
12345678910import numpy as np A = np.array([[1, 2], [3, 4]]) A_inv = np.linalg.inv(A) # Inverse of A print(f'A_inv:\n{A_inv}') I = np.eye(2) # Identity matrix 2x2 print(f'A x A_inv = I:\n{np.allclose(A @ A_inv, I)}') # Check if product equals identity
Obrigado pelo seu feedback!
Pergunte à IA
Pergunte à IA
Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo
Awesome!
Completion rate improved to 1.96
Operações com Matrizes em Python
Deslize para mostrar o menu
1. Adição e Subtração
Duas matrizes A e B com o mesmo formato podem ser somadas:
123456789import numpy as np A = np.array([[1, 2], [5, 6]]) B = np.array([[3, 4], [7, 8]]) C = A + B print(f'C:\n{C}') # C = [[4, 6], [12, 14]]
2. Regras de Multiplicação
A multiplicação de matrizes não é elemento a elemento.
Regra: se A possui formato (n,m) e B possui formato (m,l), então o resultado terá formato (n,l).
1234567891011121314151617181920import numpy as np # Example random matrix 3x2 A = np.array([[1, 2], [3, 4], [5, 6]]) print(f'A:\n{A}') # Example random matrix 2x4 B = np.array([[11, 12, 13, 14], [15, 16, 17, 18]]) print(f'B:\n{B}') # product shape (3, 4) product = np.dot(A, B) print(f'np.dot(A, B):\n{product}') # or equivalently product = A @ B print(f'A @ B:\n{product}')
3. Transposta
A transposta inverte linhas e colunas.
Regra geral: se A é (n×m), então AT é (m×n).
1234567import numpy as np A = np.array([[1, 2, 3], [4, 5, 6]]) A_T = A.T # Transpose of A print(f'A_T:\n{A_T}')
4. Inversa de uma Matriz
Uma matriz A possui uma inversa A−1 se:
A⋅A−1=IOnde I é a matriz identidade.
Nem todas as matrizes possuem inversa. Uma matriz deve ser quadrada e de posto completo.
12345678910import numpy as np A = np.array([[1, 2], [3, 4]]) A_inv = np.linalg.inv(A) # Inverse of A print(f'A_inv:\n{A_inv}') I = np.eye(2) # Identity matrix 2x2 print(f'A x A_inv = I:\n{np.allclose(A @ A_inv, I)}') # Check if product equals identity
Obrigado pelo seu feedback!