Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Autocorrelação | Processamento de Séries Temporais
Análise de Séries Temporais
course content

Conteúdo do Curso

Análise de Séries Temporais

Análise de Séries Temporais

1. Séries Temporais: Vamos Começar
2. Processamento de Séries Temporais
3. Visualização de Séries Temporais
4. Modelos Estacionários
5. Modelos Não Estacionários
6. Resolver Problemas Reais

bookAutocorrelação

A próxima característica que vamos analisar é a autocorrelação.

Autocorrelação mede o quanto os valores futuros em uma série temporal dependem linearmente dos valores passados. Quais exemplos podemos dar?

O gráfico acima mostra a popularidade dos nomes "Maria" e "Olivia" ao longo de 140 anos. A autocorrelação de Olivia decai muito mais rápido do que a de Maria: isso pode ser explicado pelo fato de que a popularidade do nome Olivia era muito baixa até 1980 e depois aumentou muito abruptamente. Enquanto a popularidade do nome Maria não teve tais saltos acentuados e se desenvolveu de forma aproximadamente constante ao longo do tempo.

Vamos visualizar a autocorrelação:

Vamos entender como interpretar este gráfico. O gráfico exibe os últimos 22 valores do conjunto de dados (que são representados por linhas verticais). Se essas linhas estiverem dentro da área sombreada em azul, isso significa que elas não possuem uma correlação significativa com os valores anteriores.

Como você pode observar no gráfico, os primeiros 13 valores estão correlacionados com os anteriores, enquanto os próximos não estão.

Em resumo, a autocorrelação é útil para identificar relações estatisticamente significativas entre valores em uma série temporal.

Tarefa
test

Swipe to show code editor

Visualize a autocorrelação dos seguintes dados air_quality_no2_long.csv para 30 registros.

  1. Importe a função plot_acf de statsmodels.graphics.tsaplots.
  2. Visualize a autocorrelação para 30 registros de "value" do DataFrame data.
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 2. Capítulo 3
toggle bottom row

bookAutocorrelação

A próxima característica que vamos analisar é a autocorrelação.

Autocorrelação mede o quanto os valores futuros em uma série temporal dependem linearmente dos valores passados. Quais exemplos podemos dar?

O gráfico acima mostra a popularidade dos nomes "Maria" e "Olivia" ao longo de 140 anos. A autocorrelação de Olivia decai muito mais rápido do que a de Maria: isso pode ser explicado pelo fato de que a popularidade do nome Olivia era muito baixa até 1980 e depois aumentou muito abruptamente. Enquanto a popularidade do nome Maria não teve tais saltos acentuados e se desenvolveu de forma aproximadamente constante ao longo do tempo.

Vamos visualizar a autocorrelação:

Vamos entender como interpretar este gráfico. O gráfico exibe os últimos 22 valores do conjunto de dados (que são representados por linhas verticais). Se essas linhas estiverem dentro da área sombreada em azul, isso significa que elas não possuem uma correlação significativa com os valores anteriores.

Como você pode observar no gráfico, os primeiros 13 valores estão correlacionados com os anteriores, enquanto os próximos não estão.

Em resumo, a autocorrelação é útil para identificar relações estatisticamente significativas entre valores em uma série temporal.

Tarefa
test

Swipe to show code editor

Visualize a autocorrelação dos seguintes dados air_quality_no2_long.csv para 30 registros.

  1. Importe a função plot_acf de statsmodels.graphics.tsaplots.
  2. Visualize a autocorrelação para 30 registros de "value" do DataFrame data.
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 2. Capítulo 3
toggle bottom row

bookAutocorrelação

A próxima característica que vamos analisar é a autocorrelação.

Autocorrelação mede o quanto os valores futuros em uma série temporal dependem linearmente dos valores passados. Quais exemplos podemos dar?

O gráfico acima mostra a popularidade dos nomes "Maria" e "Olivia" ao longo de 140 anos. A autocorrelação de Olivia decai muito mais rápido do que a de Maria: isso pode ser explicado pelo fato de que a popularidade do nome Olivia era muito baixa até 1980 e depois aumentou muito abruptamente. Enquanto a popularidade do nome Maria não teve tais saltos acentuados e se desenvolveu de forma aproximadamente constante ao longo do tempo.

Vamos visualizar a autocorrelação:

Vamos entender como interpretar este gráfico. O gráfico exibe os últimos 22 valores do conjunto de dados (que são representados por linhas verticais). Se essas linhas estiverem dentro da área sombreada em azul, isso significa que elas não possuem uma correlação significativa com os valores anteriores.

Como você pode observar no gráfico, os primeiros 13 valores estão correlacionados com os anteriores, enquanto os próximos não estão.

Em resumo, a autocorrelação é útil para identificar relações estatisticamente significativas entre valores em uma série temporal.

Tarefa
test

Swipe to show code editor

Visualize a autocorrelação dos seguintes dados air_quality_no2_long.csv para 30 registros.

  1. Importe a função plot_acf de statsmodels.graphics.tsaplots.
  2. Visualize a autocorrelação para 30 registros de "value" do DataFrame data.
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

A próxima característica que vamos analisar é a autocorrelação.

Autocorrelação mede o quanto os valores futuros em uma série temporal dependem linearmente dos valores passados. Quais exemplos podemos dar?

O gráfico acima mostra a popularidade dos nomes "Maria" e "Olivia" ao longo de 140 anos. A autocorrelação de Olivia decai muito mais rápido do que a de Maria: isso pode ser explicado pelo fato de que a popularidade do nome Olivia era muito baixa até 1980 e depois aumentou muito abruptamente. Enquanto a popularidade do nome Maria não teve tais saltos acentuados e se desenvolveu de forma aproximadamente constante ao longo do tempo.

Vamos visualizar a autocorrelação:

Vamos entender como interpretar este gráfico. O gráfico exibe os últimos 22 valores do conjunto de dados (que são representados por linhas verticais). Se essas linhas estiverem dentro da área sombreada em azul, isso significa que elas não possuem uma correlação significativa com os valores anteriores.

Como você pode observar no gráfico, os primeiros 13 valores estão correlacionados com os anteriores, enquanto os próximos não estão.

Em resumo, a autocorrelação é útil para identificar relações estatisticamente significativas entre valores em uma série temporal.

Tarefa
test

Swipe to show code editor

Visualize a autocorrelação dos seguintes dados air_quality_no2_long.csv para 30 registros.

  1. Importe a função plot_acf de statsmodels.graphics.tsaplots.
  2. Visualize a autocorrelação para 30 registros de "value" do DataFrame data.
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Seção 2. Capítulo 3
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
We're sorry to hear that something went wrong. What happened?
some-alt