Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Aumento de Dados: Dados Sintéticos | Processamento de Dados Quantitativos
Pré-processamento de Dados

Deslize para mostrar o menu

book
Aumento de Dados: Dados Sintéticos

Aumento de dados - é um passo importante no treinamento de modelos de aprendizado de máquina. Esse método é compreendido como um acréscimo na amostra de dados para treinamento por meio da modificação de dados existentes. A geração de dados “sintéticos” pode ser útil em diversas situações em que os dados do mundo real podem ser difíceis de obter, insuficientes ou sensíveis.

Esse método é usado quando não há dados suficientes para treinar um modelo de aprendizado de máquina. Sob a falta de dados, podemos entender que o conjunto de dados pode não ser representativo da população subjacente ou do fenômeno que está sendo estudado. O tamanho da amostra deve ser grande o suficiente para fornecer poder estatístico suficiente para detectar relações ou diferenças significativas. O tamanho da amostra necessário depende de fatores como a complexidade da análise, a variabilidade dos dados e o nível de precisão desejado. Gerar dados sintéticos pode ajudar a complementar os dados do mundo real e fornecer exemplos de treinamento adicionais.

A biblioteca pandas pode ser usada para criar dados sintéticos com uma estrutura ou formato específico. Aqui está um exemplo de como usar pandas para criar um conjunto de dados sintéticos:

1234567891011
import pandas as pd import numpy as np # Create a sample dataset dataset = pd.DataFrame({'A': np.random.rand(10), 'B': np.random.choice(['male', 'female'], 10), 'C': np.random.randint(1, 100, 10)}) # Generate synthetic data using Pandas synthetic_data = pd.concat([dataset, dataset.sample(frac=0.5)]) print(synthetic_data)
copy

Utilizamos o método pd.concat() para concatenar o dataframe original com um subconjunto amostrado aleatoriamente do dataframe. Ao definir o parâmetro frac como 0.5, amostramos 50% das linhas do dataframe original e as adicionamos ao final do dataframe, dobrando efetivamente o tamanho do dataframe e gerando dados sintéticos.

Tarefa

Swipe to start coding

Gere um conjunto de dados com 4 colunas e 5 linhas usando pandas.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 2. Capítulo 5

Pergunte à IA

expand
ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

book
Aumento de Dados: Dados Sintéticos

Aumento de dados - é um passo importante no treinamento de modelos de aprendizado de máquina. Esse método é compreendido como um acréscimo na amostra de dados para treinamento por meio da modificação de dados existentes. A geração de dados “sintéticos” pode ser útil em diversas situações em que os dados do mundo real podem ser difíceis de obter, insuficientes ou sensíveis.

Esse método é usado quando não há dados suficientes para treinar um modelo de aprendizado de máquina. Sob a falta de dados, podemos entender que o conjunto de dados pode não ser representativo da população subjacente ou do fenômeno que está sendo estudado. O tamanho da amostra deve ser grande o suficiente para fornecer poder estatístico suficiente para detectar relações ou diferenças significativas. O tamanho da amostra necessário depende de fatores como a complexidade da análise, a variabilidade dos dados e o nível de precisão desejado. Gerar dados sintéticos pode ajudar a complementar os dados do mundo real e fornecer exemplos de treinamento adicionais.

A biblioteca pandas pode ser usada para criar dados sintéticos com uma estrutura ou formato específico. Aqui está um exemplo de como usar pandas para criar um conjunto de dados sintéticos:

1234567891011
import pandas as pd import numpy as np # Create a sample dataset dataset = pd.DataFrame({'A': np.random.rand(10), 'B': np.random.choice(['male', 'female'], 10), 'C': np.random.randint(1, 100, 10)}) # Generate synthetic data using Pandas synthetic_data = pd.concat([dataset, dataset.sample(frac=0.5)]) print(synthetic_data)
copy

Utilizamos o método pd.concat() para concatenar o dataframe original com um subconjunto amostrado aleatoriamente do dataframe. Ao definir o parâmetro frac como 0.5, amostramos 50% das linhas do dataframe original e as adicionamos ao final do dataframe, dobrando efetivamente o tamanho do dataframe e gerando dados sintéticos.

Tarefa

Swipe to start coding

Gere um conjunto de dados com 4 colunas e 5 linhas usando pandas.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 2. Capítulo 5
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Sentimos muito que algo saiu errado. O que aconteceu?
some-alt