Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
CSV Files | Reading Files in Pandas
Pandas First Steps
course content

Conteúdo do Curso

Pandas First Steps

Pandas First Steps

1. The Very First Steps
2. Reading Files in Pandas
3. Analyzing the Data

book
CSV Files

Since pandas is the go-to library for data analysis and manipulation, one of its key features is its ability to read and write various file types, including CSV files.

A CSV (Comma-Separated Values) file is a plain text file used to store tabular data, where each row represents a record, and columns are separated by commas.

A CSV file can contain the following data:

  • Numbers: integer or decimal values (e.g., 42, 3.14);
  • Text: strings or categorical data (e.g., John, Active);
  • Dates/Times: timestamps (e.g., 2023-12-30);
  • Booleans: logical values (True, False).

Each row must have the same number of columns, and the first row often contains column headers.

Functions like read_csv() and to_csv() come in handy for dealing with CSV data.

The basic syntax of read_csv() and key parameters are as follows:

  • filepath_or_buffer: path to the CSV file (string or URL);
  • sep: delimiter (default is a comma ,);
  • header: row number to use as the column headers (default is the first row);
  • names: List of column names to use;
  • usecols: olumns to read (subset of columns).
12345
# Loading the CSV into a `DataFrame` import pandas as pd salary_data = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a43d24b6-df61-4e11-9c90-5b36552b3437/Salary+Dataset.csv') print(salary_data)
copy

Note

Make sure that the dataset link is wrapped in quotation marks.

The basic syntax of to_csv() and key parameters are as follows:

  • path_or_buf: file path or object where the CSV should be written;
  • sep: delimiter for separating values (default is a comma ,);
  • columns: subset of columns to write (default is all columns);
  • header: whether to include column names as the header (default is True);
  • index: whether to write row indices to the file (default is True).
1234567
import pandas as pd countries_data = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(countries_data) countries.to_csv('countries.csv') print('Done')
copy
Tarefa
test

Swipe to show code editor

  1. Read the CSV file into a DataFrame.
  2. Display the contents on your screen.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 2. Capítulo 1
toggle bottom row

book
CSV Files

Since pandas is the go-to library for data analysis and manipulation, one of its key features is its ability to read and write various file types, including CSV files.

A CSV (Comma-Separated Values) file is a plain text file used to store tabular data, where each row represents a record, and columns are separated by commas.

A CSV file can contain the following data:

  • Numbers: integer or decimal values (e.g., 42, 3.14);
  • Text: strings or categorical data (e.g., John, Active);
  • Dates/Times: timestamps (e.g., 2023-12-30);
  • Booleans: logical values (True, False).

Each row must have the same number of columns, and the first row often contains column headers.

Functions like read_csv() and to_csv() come in handy for dealing with CSV data.

The basic syntax of read_csv() and key parameters are as follows:

  • filepath_or_buffer: path to the CSV file (string or URL);
  • sep: delimiter (default is a comma ,);
  • header: row number to use as the column headers (default is the first row);
  • names: List of column names to use;
  • usecols: olumns to read (subset of columns).
12345
# Loading the CSV into a `DataFrame` import pandas as pd salary_data = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a43d24b6-df61-4e11-9c90-5b36552b3437/Salary+Dataset.csv') print(salary_data)
copy

Note

Make sure that the dataset link is wrapped in quotation marks.

The basic syntax of to_csv() and key parameters are as follows:

  • path_or_buf: file path or object where the CSV should be written;
  • sep: delimiter for separating values (default is a comma ,);
  • columns: subset of columns to write (default is all columns);
  • header: whether to include column names as the header (default is True);
  • index: whether to write row indices to the file (default is True).
1234567
import pandas as pd countries_data = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : ['Asia', 'Asia', 'Europe', 'Europe', 'Europe', 'South America', 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(countries_data) countries.to_csv('countries.csv') print('Done')
copy
Tarefa
test

Swipe to show code editor

  1. Read the CSV file into a DataFrame.
  2. Display the contents on your screen.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 2. Capítulo 1
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
We're sorry to hear that something went wrong. What happened?
some-alt