Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Finding Null Values | Analyzing the Data
Pandas First Steps

book
Finding Null Values

DataFrames often contain missing values, represented as None or NaN. When working with DataFrames, it's essential to identify these missing values because they can distort calculations, lead to inaccurate analyses, and compromise the reliability of results.

Addressing them ensures data integrity and improves the performance of tasks like statistical analysis and machine learning. For this purpose, pandas offers specific methods.

The first of these is isna(), which returns a boolean DataFrame. In this context, a True value indicates a missing value within the DataFrame, while a False value suggests the value is present.

For clarity, we'll apply this method on the animals DataFrame. The isna() method will return a DataFrame filled with True/False values, where each True value represents a missing value in the animals DataFrame.

import pandas as pd
import numpy as np

animals_data = {'animal': [np.NaN, 'Dog', np.NaN, 'Cat','Parrot', None],
'name': ['Dolly', None, 'Erin', 'Kelly', None, 'Odie']}
animals = pd.DataFrame(animals_data)
# Find missing values
missing_values = animals.isna()
print(missing_values)
123456789
import pandas as pd import numpy as np animals_data = {'animal': [np.NaN, 'Dog', np.NaN, 'Cat','Parrot', None], 'name': ['Dolly', None, 'Erin', 'Kelly', None, 'Odie']} animals = pd.DataFrame(animals_data) # Find missing values missing_values = animals.isna() print(missing_values)
copy

The second method is isnull(). It behaves identically to the previous one, with no discernible difference between them.

Tarefa
test

Swipe to show code editor

Your objective is to pinpoint the missing values in a given DataFrame named wine_data.

Solução

import pandas as pd

wine_data = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a43d24b6-df61-4e11-9c90-5b36552b3437/wine_with_nan.csv')
# Write your code here
missing_values = wine_data.isnull()
print(missing_values)

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 3. Capítulo 6
import pandas as pd

wine_data = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/a43d24b6-df61-4e11-9c90-5b36552b3437/wine_with_nan.csv')
# Write your code here
missing_values = ___
print(___)
toggle bottom row
some-alt