Conteúdo do Curso
Pandas First Steps
Pandas First Steps
Deleting a Row/Column
At times, certain columns may not provide valuable information, making it advantageous to remove them. The pandas
library offers the drop()
method for this purpose. Let's delve into the function's syntax.
index
: Specifies the row indexes to be deleted (used whenaxis=0
);columns
: Identifies the column names to be deleted (used whenaxis=1
);axis
: Choose whether to remove labels from the rows (0) or columns (1). The default is 0.
In this section, we're going to work with a specific DataFrame. Let's examine it.
import pandas as pd dataset = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : [None, None, 'Europe', None, 'Europe', None, 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(dataset) print(countries)
We notice that the continent
column contains numerous empty rows, making it less informative. Consequently, we'll remove it.
import pandas dataset = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : [None, None, 'Europe', None, 'Europe', None, 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pandas.DataFrame(dataset) countries = countries.drop(columns = ['continent'],axis=1) print(countries)
Time for some hands-on practice.
Swipe to show code editor
We have a DataFrame called audi_cars
. Take a close look at the provided dictionary and eliminate the irrelevant column. Give it a try!
Obrigado pelo seu feedback!
Deleting a Row/Column
At times, certain columns may not provide valuable information, making it advantageous to remove them. The pandas
library offers the drop()
method for this purpose. Let's delve into the function's syntax.
index
: Specifies the row indexes to be deleted (used whenaxis=0
);columns
: Identifies the column names to be deleted (used whenaxis=1
);axis
: Choose whether to remove labels from the rows (0) or columns (1). The default is 0.
In this section, we're going to work with a specific DataFrame. Let's examine it.
import pandas as pd dataset = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : [None, None, 'Europe', None, 'Europe', None, 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(dataset) print(countries)
We notice that the continent
column contains numerous empty rows, making it less informative. Consequently, we'll remove it.
import pandas dataset = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : [None, None, 'Europe', None, 'Europe', None, 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pandas.DataFrame(dataset) countries = countries.drop(columns = ['continent'],axis=1) print(countries)
Time for some hands-on practice.
Swipe to show code editor
We have a DataFrame called audi_cars
. Take a close look at the provided dictionary and eliminate the irrelevant column. Give it a try!
Obrigado pelo seu feedback!
Deleting a Row/Column
At times, certain columns may not provide valuable information, making it advantageous to remove them. The pandas
library offers the drop()
method for this purpose. Let's delve into the function's syntax.
index
: Specifies the row indexes to be deleted (used whenaxis=0
);columns
: Identifies the column names to be deleted (used whenaxis=1
);axis
: Choose whether to remove labels from the rows (0) or columns (1). The default is 0.
In this section, we're going to work with a specific DataFrame. Let's examine it.
import pandas as pd dataset = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : [None, None, 'Europe', None, 'Europe', None, 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(dataset) print(countries)
We notice that the continent
column contains numerous empty rows, making it less informative. Consequently, we'll remove it.
import pandas dataset = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : [None, None, 'Europe', None, 'Europe', None, 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pandas.DataFrame(dataset) countries = countries.drop(columns = ['continent'],axis=1) print(countries)
Time for some hands-on practice.
Swipe to show code editor
We have a DataFrame called audi_cars
. Take a close look at the provided dictionary and eliminate the irrelevant column. Give it a try!
Obrigado pelo seu feedback!
At times, certain columns may not provide valuable information, making it advantageous to remove them. The pandas
library offers the drop()
method for this purpose. Let's delve into the function's syntax.
index
: Specifies the row indexes to be deleted (used whenaxis=0
);columns
: Identifies the column names to be deleted (used whenaxis=1
);axis
: Choose whether to remove labels from the rows (0) or columns (1). The default is 0.
In this section, we're going to work with a specific DataFrame. Let's examine it.
import pandas as pd dataset = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : [None, None, 'Europe', None, 'Europe', None, 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pd.DataFrame(dataset) print(countries)
We notice that the continent
column contains numerous empty rows, making it less informative. Consequently, we'll remove it.
import pandas dataset = {'country' : ['Thailand', 'Philippines', 'Monaco', 'Malta', 'Sweden', 'Paraguay', 'Latvia'], 'continent' : [None, None, 'Europe', None, 'Europe', None, 'Europe'], 'capital':['Bangkok', 'Manila', 'Monaco', 'Valletta', 'Stockholm', 'Asuncion', 'Riga']} countries = pandas.DataFrame(dataset) countries = countries.drop(columns = ['continent'],axis=1) print(countries)
Time for some hands-on practice.
Swipe to show code editor
We have a DataFrame called audi_cars
. Take a close look at the provided dictionary and eliminate the irrelevant column. Give it a try!