Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Challenge: Creating a Complete ML Pipeline | Pipelines
ML Introduction with scikit-learn

Deslize para mostrar o menu

book
Challenge: Creating a Complete ML Pipeline

Now let's create a proper pipeline with the final estimator. As a result, we will get a trained prediction pipeline that can be used for predicting new instances simply by calling the .predict() method.

To train a predictor (model), you need y to be encoded. This is done separately from the pipeline we build for X. Remember that LabelEncoder is used for encoding the target.

Tarefa

Swipe to start coding

You have the same penguins dataset. The task is to build a pipeline with KNeighborsClassifier as a final estimator, train it, and predict values for the X itself.

  1. Encode the y variable.
  2. Create a pipeline containing ct, SimpleImputer, StandardScaler, and KNeighborsClassifier.
  3. Train the pipe object using the features X and the target y.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 3. Capítulo 6
Sentimos muito que algo saiu errado. O que aconteceu?

Pergunte à IA

expand
ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

book
Challenge: Creating a Complete ML Pipeline

Now let's create a proper pipeline with the final estimator. As a result, we will get a trained prediction pipeline that can be used for predicting new instances simply by calling the .predict() method.

To train a predictor (model), you need y to be encoded. This is done separately from the pipeline we build for X. Remember that LabelEncoder is used for encoding the target.

Tarefa

Swipe to start coding

You have the same penguins dataset. The task is to build a pipeline with KNeighborsClassifier as a final estimator, train it, and predict values for the X itself.

  1. Encode the y variable.
  2. Create a pipeline containing ct, SimpleImputer, StandardScaler, and KNeighborsClassifier.
  3. Train the pipe object using the features X and the target y.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 3. Capítulo 6
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Sentimos muito que algo saiu errado. O que aconteceu?
some-alt