Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Desafio: Definir métrica | U-Test
A Arte do Teste A/B

book
Desafio: Definir métrica

Tarefa

Swipe to start coding

Nesta tarefa, você deve adicionar a métrica 'Média de Ganhos por Clique' às amostras de controle e teste. Após isso, você deve plotar os histogramas das novas colunas e marcar os valores médios das métricas no gráfico.

  1. Importe as bibliotecas.
  2. Leia os arquivos.
  3. Defina a métrica 'Média de Ganhos por Clique' e adicione-a a ambas as amostras.
  4. Adicione uma linha com o valor da média.

Solução

# Import libraries
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns

# Read .csv files
df_control = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_control.csv', delimiter=';')
df_test = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_test.csv', delimiter=';')

# Define metric
df_test['Average Earnings per Click'] = df_test['Earning'] / df_test['Click']
df_control['Average Earnings per Click'] = df_control['Earning'] / df_control['Click']

# Ploting hist
sns.histplot(df_control['Average Earnings per Click'], color="#1e2635", label="AEC of Control Group")
sns.histplot(df_test['Average Earnings per Click'], color="#ff8a00", label="AEC of Test Group")

# Add mean line
plt.axvline(df_control['Average Earnings per Click'].mean(), color="#1e2635", linestyle='dashed', linewidth=1, label='Mean Control Group')
plt.axvline(df_test['Average Earnings per Click'].mean(), color="#ff8a00", linestyle='dashed', linewidth=1, label='Mean Test Group')

# Sign the axes
plt.xlabel('Average Earnings per Click')
plt.ylabel('Frequency')
plt.legend()
plt.title('Histogram of Average Earnings per Click')

# Show the result
plt.show()
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 5. Capítulo 2
single

single

# Import libraries
___ ___ as plt
___ ___ as pd
___ ___ as sns

# Read .csv files
df_control = pd.___('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_control.csv', delimiter=';')
df_test = pd.___('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_test.csv', delimiter=';')

# Define metric
df_test['Average Earnings per Click'] = df_test['___'] / df_test['___']
df_control['Average Earnings per Click'] = df_control['___'] / df_control['___']

# Ploting hist
sns.histplot(df_control['Average Earnings per Click'], color="#1e2635", label="AEC of Control Group")
sns.histplot(df_test['Average Earnings per Click'], color="#ff8a00", label="AEC of Test Group")

# Add mean line
plt___(df_control['Average Earnings per Click']___, color="#1e2635", linestyle='dashed', linewidth=1, label='Mean Control Group')
plt___(df_test['Average Earnings per Click']___, color="#ff8a00", linestyle='dashed', linewidth=1, label='Mean Test Group')

# Sign the axes
plt.xlabel('Average Earnings per Click')
plt.ylabel('Frequency')
plt.legend()
plt.title('Histogram of Average Earnings per Click')

# Show the result
plt.show()

Pergunte à IA

expand

Pergunte à IA

ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

some-alt