Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Desafio: O Último U-Teste | U-Test
A Arte do Teste A/B

book
Desafio: O Último U-Teste

Tarefa

Swipe to start coding

Nesta tarefa, você precisa determinar qual das medianas é maior. Para isso, usaremos box plots.

  1. Defina a métrica.
  2. Construa um box plot.

Solução

# Import libraries
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns

# Read .csv files
df_control = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_control.csv', delimiter=';')
df_test = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_test.csv', delimiter=';')

# Define the metric
df_test['Average Earnings per Click'] = df_test['Earning'] / df_test['Click']
df_control['Average Earnings per Click'] = df_control['Earning'] / df_control['Click']

# Add to the dataframes columns-labels, which mean belonging to either the control or the test group
df_control['group'] = 'Contol group'
df_test['group'] = 'Test group'

# Concat the dataframes and plotting boxplots
df_combined = pd.concat([df_control, df_test])
sns.boxplot(data=df_combined, x='group', y='Average Earnings per Click', palette=['#1e2635', '#ff8a00'],
medianprops={'color': 'red'})

# Sign the axis
plt.xlabel('')
plt.ylabel('Average Earnings per Click')
plt.title('Comparison of AEC')

# Show the results
plt.show()
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 5. Capítulo 6
single

single

# Import libraries
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns

# Read .csv files
df_control = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_control.csv', delimiter=';')
df_test = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/c3b98ad3-420d-403f-908d-6ab8facc3e28/ab_test.csv', delimiter=';')

# Define the metric
df_test['Average Earnings per Click'] = df_test['___'] / df_test['___']
df_control['Average Earnings per Click'] = df_control['___'] / df_control['___']

# Add to the dataframes columns-labels, which mean belonging to either the control or the test group
df_control['group'] = 'Contol group'
df_test['group'] = 'Test group'

# Concat the dataframes and plotting boxplots
df_combined = pd.concat([df_control, df_test])
sns.___(data=df_combined, x='group', y='Average Earnings per Click', palette=['#1e2635', '#ff8a00'],
medianprops={'color': 'red'})

# Sign the axis
plt.xlabel('')
plt.ylabel('Average Earnings per Click')
plt.title('Comparison of AEC')

# Show the results
plt.show()

Pergunte à IA

expand

Pergunte à IA

ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

We use cookies to make your experience better!
some-alt