Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Challenge: Simulating ARIMA Processes | Mathematical Foundations of ARIMA
Time Series Forecasting with ARIMA

bookChallenge: Simulating ARIMA Processes

Tarefa

Swipe to start coding

Your goal is to simulate an ARIMA time series using the ArmaProcess class from statsmodels. You will generate artificial data, visualize it, and explore how the AR (p) and MA (q) parameters affect the behavior of the series.

Perform the following steps:

  1. Import the ArmaProcess class from statsmodels.tsa.arima_process.

  2. Define AR and MA parameters for an ARIMA(2,0,1) process:

    • AR coefficients = [1, -0.75, 0.25]
    • MA coefficients = [1, 0.65]
  3. Initialize an ARMA process with these parameters.

  4. Simulate 500 samples using .generate_sample(nsample=500).

  5. Plot the resulting series using matplotlib.

  6. Display the first 10 values of the generated time series.

Solução

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 2. Capítulo 4
single

single

Pergunte à IA

expand

Pergunte à IA

ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

Suggested prompts:

Can you explain this in simpler terms?

What are some examples related to this topic?

Where can I learn more about this?

close

Awesome!

Completion rate improved to 6.67

bookChallenge: Simulating ARIMA Processes

Deslize para mostrar o menu

Tarefa

Swipe to start coding

Your goal is to simulate an ARIMA time series using the ArmaProcess class from statsmodels. You will generate artificial data, visualize it, and explore how the AR (p) and MA (q) parameters affect the behavior of the series.

Perform the following steps:

  1. Import the ArmaProcess class from statsmodels.tsa.arima_process.

  2. Define AR and MA parameters for an ARIMA(2,0,1) process:

    • AR coefficients = [1, -0.75, 0.25]
    • MA coefficients = [1, 0.65]
  3. Initialize an ARMA process with these parameters.

  4. Simulate 500 samples using .generate_sample(nsample=500).

  5. Plot the resulting series using matplotlib.

  6. Display the first 10 values of the generated time series.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 2. Capítulo 4
single

single

some-alt