Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Challenge: Manual Feature Centering | Foundations of Feature Scaling
Feature Scaling and Normalization Deep Dive

bookChallenge: Manual Feature Centering

Tarefa

Swipe to start coding

You are given a small dataset X as a NumPy array of shape (n_samples, n_features). Your goal is to manually center each feature (column) by subtracting its mean, without using scikit-learn. Use vectorized NumPy operations.

  1. Compute the per-feature means as a 1D array feature_means of shape (n_features,).
  2. Create X_centered = X - feature_means using broadcasting.
  3. Compute column means of X_centered to verify they are approximately zero.
  4. Do not use loops and do not modify X in place.

Solução

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 1. Capítulo 4
single

single

Pergunte à IA

expand

Pergunte à IA

ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

Suggested prompts:

Can you explain this in simpler terms?

What are the main benefits or drawbacks?

Can you give me a real-world example?

close

Awesome!

Completion rate improved to 5.26

bookChallenge: Manual Feature Centering

Deslize para mostrar o menu

Tarefa

Swipe to start coding

You are given a small dataset X as a NumPy array of shape (n_samples, n_features). Your goal is to manually center each feature (column) by subtracting its mean, without using scikit-learn. Use vectorized NumPy operations.

  1. Compute the per-feature means as a 1D array feature_means of shape (n_features,).
  2. Create X_centered = X - feature_means using broadcasting.
  3. Compute column means of X_centered to verify they are approximately zero.
  4. Do not use loops and do not modify X in place.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 1. Capítulo 4
single

single

some-alt