Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Challenge: Build a Preprocessing Pipeline | Choosing and Evaluating Techniques
Feature Scaling and Normalization Deep Dive

bookChallenge: Build a Preprocessing Pipeline

Tarefa

Swipe to start coding

You're given a small mixed-type dataset. Build a leakage-safe preprocessing + model pipeline with scikit-learn:

  1. Split data into X (features) and y (target), then do a train/test split (test_size=0.3, random_state=42).
  2. Create a ColumnTransformer named preprocess:
    • numeric columns → StandardScaler()
    • categorical columns → OneHotEncoder(handle_unknown="ignore")
  3. Build a Pipeline named pipe with steps:
    • ("preprocess", preprocess)
    • ("clf", LogisticRegression(max_iter=1000, random_state=0))
  4. Fit on train only, then predict on test:
    • compute y_pred and test_accuracy = accuracy_score(y_test, y_pred)
  5. Add a few prints at the end to show shapes and the accuracy.

Solução

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 5. Capítulo 3
single

single

Pergunte à IA

expand

Pergunte à IA

ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

Suggested prompts:

Can you explain this in simpler terms?

What are the main points I should remember?

Can you give me an example?

close

Awesome!

Completion rate improved to 5.26

bookChallenge: Build a Preprocessing Pipeline

Deslize para mostrar o menu

Tarefa

Swipe to start coding

You're given a small mixed-type dataset. Build a leakage-safe preprocessing + model pipeline with scikit-learn:

  1. Split data into X (features) and y (target), then do a train/test split (test_size=0.3, random_state=42).
  2. Create a ColumnTransformer named preprocess:
    • numeric columns → StandardScaler()
    • categorical columns → OneHotEncoder(handle_unknown="ignore")
  3. Build a Pipeline named pipe with steps:
    • ("preprocess", preprocess)
    • ("clf", LogisticRegression(max_iter=1000, random_state=0))
  4. Fit on train only, then predict on test:
    • compute y_pred and test_accuracy = accuracy_score(y_test, y_pred)
  5. Add a few prints at the end to show shapes and the accuracy.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 5. Capítulo 3
single

single

some-alt