Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Challenge: Damped Oscillator Simulation | Dynamics and System Simulation
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Python for Mechanical Engineers

bookChallenge: Damped Oscillator Simulation

Damped oscillators are common in engineering. This challenge will help you automate their simulation and analysis. When a mass is attached to a spring and damper, its motion is governed by the balance of restoring, damping, and inertial forces. For underdamped systems, the displacement follows a characteristic exponentially decaying oscillation, which is important for predicting how real-world mechanical systems behave after being disturbed.

Tarefa

Swipe to start coding

Implement a function that computes and returns the displacement of a damped oscillator at each time step, given system parameters and initial conditions.

  • Use the analytical solution for an underdamped mass-spring-damper system.
  • Compute displacement at each time step from t = 0 to duration, incrementing by dt.
  • The function should accept mass (m), spring constant (k), damping coefficient (c), initial displacement (x0), initial velocity (v0), total simulation time (duration), and time step (dt) as arguments.
  • Return a list of displacement values, one for each time step.

Solução

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 2. Capítulo 5
single

single

Pergunte à IA

expand

Pergunte à IA

ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

close

bookChallenge: Damped Oscillator Simulation

Deslize para mostrar o menu

Damped oscillators are common in engineering. This challenge will help you automate their simulation and analysis. When a mass is attached to a spring and damper, its motion is governed by the balance of restoring, damping, and inertial forces. For underdamped systems, the displacement follows a characteristic exponentially decaying oscillation, which is important for predicting how real-world mechanical systems behave after being disturbed.

Tarefa

Swipe to start coding

Implement a function that computes and returns the displacement of a damped oscillator at each time step, given system parameters and initial conditions.

  • Use the analytical solution for an underdamped mass-spring-damper system.
  • Compute displacement at each time step from t = 0 to duration, incrementing by dt.
  • The function should accept mass (m), spring constant (k), damping coefficient (c), initial displacement (x0), initial velocity (v0), total simulation time (duration), and time step (dt) as arguments.
  • Return a list of displacement values, one for each time step.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 2. Capítulo 5
single

single

some-alt