Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Challenge: Preprocessing Pipeline | Section
Practice
Projects
Quizzes & Challenges
Questionários
Challenges
/
Data Preprocessing and Feature Engineering

bookChallenge: Preprocessing Pipeline

Tarefa

Swipe to start coding

You are given the Titanic dataset from the seaborn library. Your task is to build a complete preprocessing pipeline that performs all essential data transformations used before machine learning.

Follow these steps:

  1. Load the dataset using sns.load_dataset("titanic").
  2. Handle missing values:
    • Numeric columns → fill with mean.
    • Categorical columns → fill with mode.
  3. Encode the categorical features sex and embarked using pd.get_dummies().
  4. Scale numeric columns age and fare using StandardScaler.
  5. Create a new feature family_size = sibsp + parch + 1.
  6. Combine all transformations into a function called preprocess_titanic(data) that returns the final processed DataFrame.
  7. Assign the processed dataset to a variable called processed_data.

Print the first 5 rows of the final DataFrame.

Solução

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 1. Capítulo 12
single

single

Pergunte à IA

expand

Pergunte à IA

ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

close

bookChallenge: Preprocessing Pipeline

Deslize para mostrar o menu

Tarefa

Swipe to start coding

You are given the Titanic dataset from the seaborn library. Your task is to build a complete preprocessing pipeline that performs all essential data transformations used before machine learning.

Follow these steps:

  1. Load the dataset using sns.load_dataset("titanic").
  2. Handle missing values:
    • Numeric columns → fill with mean.
    • Categorical columns → fill with mode.
  3. Encode the categorical features sex and embarked using pd.get_dummies().
  4. Scale numeric columns age and fare using StandardScaler.
  5. Create a new feature family_size = sibsp + parch + 1.
  6. Combine all transformations into a function called preprocess_titanic(data) that returns the final processed DataFrame.
  7. Assign the processed dataset to a variable called processed_data.

Print the first 5 rows of the final DataFrame.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 1. Capítulo 12
single

single

some-alt