Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Simultaneous Replacement | Preprocessing Data: Part I
Data Manipulation using pandas

bookSimultaneous Replacement

The method described in the previous chapter allows you to replace specific values in one column 'manually'. But we need to perform replacements in 4 columns, which means we need to repeat the actions at least 3 more times.

However, pandas predicted that task, too. Let's consider the method that allows to perform replacement for all dataframe columns.

1
df.where(condition, other = values_to_replace, inplace = False)
copy

Explanation: condition is the first parameter, if True, then keeps original values, if False, then replaces them by values specified in the other parameter. inplace - if True, then rewrites the data. If you want to 'revert' the condition to opposite, place the ~ symbol in front of it. For instance, let's replace all the zeros with the word null.

12345678
# Importing the library import pandas as pd # Reading the file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/f2947b09-5f0d-4ad9-992f-ec0b87cd4b3f/data1.csv') # Replace 0s by words 'null' df = df.where(~(df == 0), other = 'null') print(df)
copy

As you can see, there are many 'null's appeared in the dataframe. If you remove the ~ symbol within the .where() method, then all values but 0 will be replaced to 'null'.

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 1. Capítulo 7

Pergunte à IA

expand

Pergunte à IA

ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

Awesome!

Completion rate improved to 2.56

bookSimultaneous Replacement

Deslize para mostrar o menu

The method described in the previous chapter allows you to replace specific values in one column 'manually'. But we need to perform replacements in 4 columns, which means we need to repeat the actions at least 3 more times.

However, pandas predicted that task, too. Let's consider the method that allows to perform replacement for all dataframe columns.

1
df.where(condition, other = values_to_replace, inplace = False)
copy

Explanation: condition is the first parameter, if True, then keeps original values, if False, then replaces them by values specified in the other parameter. inplace - if True, then rewrites the data. If you want to 'revert' the condition to opposite, place the ~ symbol in front of it. For instance, let's replace all the zeros with the word null.

12345678
# Importing the library import pandas as pd # Reading the file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/f2947b09-5f0d-4ad9-992f-ec0b87cd4b3f/data1.csv') # Replace 0s by words 'null' df = df.where(~(df == 0), other = 'null') print(df)
copy

As you can see, there are many 'null's appeared in the dataframe. If you remove the ~ symbol within the .where() method, then all values but 0 will be replaced to 'null'.

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 1. Capítulo 7
some-alt