Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Try to Evaluate | Multivariate Linear Regression
Explore the Linear Regression Using Python

Deslize para mostrar o menu

book
Try to Evaluate

Let’s see which model is better using the metrics we already know.

MSE:

123
from sklearn.metrics import mean_squared_error print(mean_squared_error(Y_test, y_test_predicted).round(2)) print(mean_squared_error(Y_test, y_test_predicted2).round(2))
copy
python

MAE:

123
from sklearn.metrics import mean_absolute_error print(mean_absolute_error(Y_test, y_test_predicted).round(2)) print(mean_absolute_error(Y_test, y_test_predicted2).round(2))
copy
python

R-squared:

123
from sklearn.metrics import r2_score print(r2_score(Y_test, y_test_predicted).round(2)) print(r2_score(Y_test, y_test_predicted2).round(2))
copy
python

As a general rule, the more features a model includes, the lower the MSE (RMSE) and MAE will be. However, be careful about including too many features. Some of them may be extremely random, degrading the model's interpretability.

Tarefa

Swipe to start coding

Let’s evaluate the model from the previous task:

  1. [Line #30] Import mean_squared_error for calculating metrics from scikit.metrics.
  2. [Line #31] Find MSE using method mean_squared_error() and Y_test, y_test_predicted2 as the parameters, assign it to the variable MSE, round the result to second digit.
  3. [Line #32] Print the variable MSE.
  4. [Line #35] Import r2_score from scikit.metrics.
  5. [Line #36] Find R-squared and assign it to the variable r_squared, round the result to second digit.
  6. [Line #37] Print the variable r_squared.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 5. Capítulo 2

Pergunte à IA

expand
ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

book
Try to Evaluate

Let’s see which model is better using the metrics we already know.

MSE:

123
from sklearn.metrics import mean_squared_error print(mean_squared_error(Y_test, y_test_predicted).round(2)) print(mean_squared_error(Y_test, y_test_predicted2).round(2))
copy
python

MAE:

123
from sklearn.metrics import mean_absolute_error print(mean_absolute_error(Y_test, y_test_predicted).round(2)) print(mean_absolute_error(Y_test, y_test_predicted2).round(2))
copy
python

R-squared:

123
from sklearn.metrics import r2_score print(r2_score(Y_test, y_test_predicted).round(2)) print(r2_score(Y_test, y_test_predicted2).round(2))
copy
python

As a general rule, the more features a model includes, the lower the MSE (RMSE) and MAE will be. However, be careful about including too many features. Some of them may be extremely random, degrading the model's interpretability.

Tarefa

Swipe to start coding

Let’s evaluate the model from the previous task:

  1. [Line #30] Import mean_squared_error for calculating metrics from scikit.metrics.
  2. [Line #31] Find MSE using method mean_squared_error() and Y_test, y_test_predicted2 as the parameters, assign it to the variable MSE, round the result to second digit.
  3. [Line #32] Print the variable MSE.
  4. [Line #35] Import r2_score from scikit.metrics.
  5. [Line #36] Find R-squared and assign it to the variable r_squared, round the result to second digit.
  6. [Line #37] Print the variable r_squared.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 5. Capítulo 2
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Sentimos muito que algo saiu errado. O que aconteceu?
some-alt