Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Prediction | Building and Training Model
Explore the Linear Regression Using Python

Deslize para mostrar o menu

book
Prediction

Once we've trained our module, it's time to think about test data evaluation and future predictions. We can make predictions using the method predict().

Let's look at an example. Prediction for flavanoids when the number of total phenols is 1:

12
new_total_phenols = np.array([1]).reshape(-1,1) print(model.predict(new_total_phenols))
copy
python

Method .reshape() gives a new shape to an array without changing its data. Input must be a 2-dimension (DataFrame or 2-dimension array will work here).

This value is the same as if we had substituted the line b + kx, where b is the estimated intersection with the model, and k is the slope. Please note that we multiply by 1 since the number of total phenols is 1 (x = 1).

1
prediction = model.intercept_ + model.coef_*1
copy

We can also put our testing data to get predictions for all amounts of flavanoids:

1
y_test_predicted = model.predict(X_test)
copy
Tarefa

Swipe to start coding

Predict with the previous split-train data the amount of flavanoids if the total phenols is 2.

  1. [Line #6] Import the numpy library.
  2. [Line #26] Initialize the linear regression model.
  3. [Line #30] Assign np.array() and number of total phenols as the parameter (2) to the variable new_total_phenols (don’t forget to use the function .reshape(-1,1)).
  4. [Line #31] Predict amount of flavanoids
  5. [Line #32] Print the predicted amount of flavanoids.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 3. Capítulo 3

Pergunte à IA

expand
ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

book
Prediction

Once we've trained our module, it's time to think about test data evaluation and future predictions. We can make predictions using the method predict().

Let's look at an example. Prediction for flavanoids when the number of total phenols is 1:

12
new_total_phenols = np.array([1]).reshape(-1,1) print(model.predict(new_total_phenols))
copy
python

Method .reshape() gives a new shape to an array without changing its data. Input must be a 2-dimension (DataFrame or 2-dimension array will work here).

This value is the same as if we had substituted the line b + kx, where b is the estimated intersection with the model, and k is the slope. Please note that we multiply by 1 since the number of total phenols is 1 (x = 1).

1
prediction = model.intercept_ + model.coef_*1
copy

We can also put our testing data to get predictions for all amounts of flavanoids:

1
y_test_predicted = model.predict(X_test)
copy
Tarefa

Swipe to start coding

Predict with the previous split-train data the amount of flavanoids if the total phenols is 2.

  1. [Line #6] Import the numpy library.
  2. [Line #26] Initialize the linear regression model.
  3. [Line #30] Assign np.array() and number of total phenols as the parameter (2) to the variable new_total_phenols (don’t forget to use the function .reshape(-1,1)).
  4. [Line #31] Predict amount of flavanoids
  5. [Line #32] Print the predicted amount of flavanoids.

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 3. Capítulo 3
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Sentimos muito que algo saiu errado. O que aconteceu?
some-alt