Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Forward Propagation | Neural Network from Scratch
Introduction to Neural Networks

Deslize para mostrar o menu

book
Forward Propagation

You have already implemented forward propagation for a single layer in the previous chapter. Now, the goal is to implement complete forward propagation, from inputs to outputs.

To implement the entire forward propagation process, you need to define the forward() method in the Perceptron class. This method performs forward propagation layer by layer by calling the respective method for each layer:

python

The inputs pass through the first hidden layer, with each layer's outputs serving as inputs for the next, until reaching the final layer to produce the final output.

Tarefa

Swipe to start coding

Your goal is to implement forward propagation for the perceptron:

  1. Iterate over the layers of the perceptron.
  2. Pass x through each layer in the network sequentially.
  3. Return the final output after all layers have processed the input.

If the forward() method is implemented correctly, the perceptron should output a single number between 0 and 1 when given certain inputs (e.g, [1, 0]).

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 2. Capítulo 5
Sentimos muito que algo saiu errado. O que aconteceu?

Pergunte à IA

expand
ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

book
Forward Propagation

You have already implemented forward propagation for a single layer in the previous chapter. Now, the goal is to implement complete forward propagation, from inputs to outputs.

To implement the entire forward propagation process, you need to define the forward() method in the Perceptron class. This method performs forward propagation layer by layer by calling the respective method for each layer:

python

The inputs pass through the first hidden layer, with each layer's outputs serving as inputs for the next, until reaching the final layer to produce the final output.

Tarefa

Swipe to start coding

Your goal is to implement forward propagation for the perceptron:

  1. Iterate over the layers of the perceptron.
  2. Pass x through each layer in the network sequentially.
  3. Return the final output after all layers have processed the input.

If the forward() method is implemented correctly, the perceptron should output a single number between 0 and 1 when given certain inputs (e.g, [1, 0]).

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 2. Capítulo 5
Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Sentimos muito que algo saiu errado. O que aconteceu?
some-alt