Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Aprenda Challenge: ODE Solver Accuracy and Stability | Differential Equations and Dynamic Systems
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
Numerical Methods for Scientific Computing with Python

bookChallenge: ODE Solver Accuracy and Stability

You will implement and compare two numerical ODE solvers for the initial value problem (IVP):

dydt=f(t,y),y(t0)=y0\frac{dy}{dt} = f(t, y), \qquad y(t_0)=y_0

You will implement:

Euler Method

  • First-order method (less accurate).
  • Can become unstable for stiff or sensitive problems.

Runge–Kutta 4 (RK4)

  • Fourth-order method (more accurate).
  • Typically more stable than Euler for the same step size.

You will solve the test ODE:

dydt=y,y(0)=1\frac{dy}{dt} = y,\quad y(0)=1

The analytical solution is:

y(t)=ety(t)=e^t
Tarefa

Swipe to start coding

  • Implement euler_solver and rk4_solver.
  • Use a fixed step size h and integrate from t0 to t_end.
  • Return the final value (y(tend)y(t_{end})).
  • Compute the absolute error compared to (etende^{t_{end}}).

Solução

Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 3. Capítulo 4
single

single

Pergunte à IA

expand

Pergunte à IA

ChatGPT

Pergunte o que quiser ou experimente uma das perguntas sugeridas para iniciar nosso bate-papo

Suggested prompts:

Can you show me how to implement the Euler method for this ODE?

Can you explain how the RK4 method works for this problem?

How do the numerical solutions compare to the analytical solution?

close

bookChallenge: ODE Solver Accuracy and Stability

Deslize para mostrar o menu

You will implement and compare two numerical ODE solvers for the initial value problem (IVP):

dydt=f(t,y),y(t0)=y0\frac{dy}{dt} = f(t, y), \qquad y(t_0)=y_0

You will implement:

Euler Method

  • First-order method (less accurate).
  • Can become unstable for stiff or sensitive problems.

Runge–Kutta 4 (RK4)

  • Fourth-order method (more accurate).
  • Typically more stable than Euler for the same step size.

You will solve the test ODE:

dydt=y,y(0)=1\frac{dy}{dt} = y,\quad y(0)=1

The analytical solution is:

y(t)=ety(t)=e^t
Tarefa

Swipe to start coding

  • Implement euler_solver and rk4_solver.
  • Use a fixed step size h and integrate from t0 to t_end.
  • Return the final value (y(tend)y(t_{end})).
  • Compute the absolute error compared to (etende^{t_{end}}).

Solução

Switch to desktopMude para o desktop para praticar no mundo realContinue de onde você está usando uma das opções abaixo
Tudo estava claro?

Como podemos melhorá-lo?

Obrigado pelo seu feedback!

Seção 3. Capítulo 4
single

single

some-alt