Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Fourier Transform and Frequency Analysis | Signal Processing for Electrical Engineers
Python for Electrical Engineers

bookFourier Transform and Frequency Analysis

Understanding the frequency content of signals is a fundamental skill for any electrical engineer. The Fourier Transform is a powerful mathematical tool that allows you to decompose a time-domain signal into its constituent frequency components. This transformation reveals which frequencies are present in a signal and with what amplitudes, making it essential for analyzing and processing signals in communication systems, audio engineering, and instrumentation. In practical terms, the Fourier Transform helps you identify periodicities, detect unwanted noise, and design filters that target specific frequency bands. By leveraging python, you can efficiently perform frequency analysis on sampled signals and visualize the results for deeper insight.

12345678910111213141516171819202122232425262728
import numpy as np import matplotlib.pyplot as plt # Parameters for the sine wave fs = 1000 # Sampling frequency (Hz) t = np.linspace(0, 1, fs, endpoint=False) # 1 second of data f = 50 # Frequency of the sine wave (Hz) amplitude = 1.0 # Generate the sine wave signal = amplitude * np.sin(2 * np.pi * f * t) # Compute FFT fft_values = np.fft.fft(signal) fft_freqs = np.fft.fftfreq(len(signal), 1/fs) # Take the positive frequency part positive_freqs = fft_freqs[:len(signal)//2] positive_magnitude = np.abs(fft_values[:len(signal)//2]) * 2 / len(signal) # Plot the result plt.figure(figsize=(10, 4)) plt.plot(positive_freqs, positive_magnitude) plt.title("FFT of a 50 Hz Sine Wave") plt.xlabel("Frequency (Hz)") plt.ylabel("Amplitude") plt.grid(True) plt.show()
copy

Step-by-step explanation of FFT computation and spectrum interpretation

To understand how the Fast Fourier Transform (FFT) works, start by sampling your signal at a fixed rate, such as 1000 Hz. The FFT algorithm efficiently computes the discrete Fourier Transform (DFT) of this sampled data, converting it from the time domain into the frequency domain. The result is a set of complex numbers that represent the amplitude and phase of each frequency component present in the original signal. By taking the magnitude of these complex values, you obtain the amplitude spectrum, which shows how much of each frequency exists in the signal. The x-axis of the resulting plot represents frequency in Hertz, while the y-axis shows amplitude. Peaks in the spectrum indicate dominant frequencies in the original signal. For a pure sine wave at 50 Hz, you will see a sharp peak at 50 Hz, confirming the frequency content of the signal.

123456789101112131415161718192021222324252627282930
import numpy as np import matplotlib.pyplot as plt # Parameters for composite signal fs = 1000 # Sampling frequency (Hz) t = np.linspace(0, 1, fs, endpoint=False) # 1 second of data f1 = 40 # Frequency of first sine wave (Hz) f2 = 120 # Frequency of second sine wave (Hz) amp1 = 1.0 amp2 = 0.5 # Generate composite signal signal = amp1 * np.sin(2 * np.pi * f1 * t) + amp2 * np.sin(2 * np.pi * f2 * t) # Compute FFT fft_values = np.fft.fft(signal) fft_freqs = np.fft.fftfreq(len(signal), 1/fs) # Take the positive frequency part positive_freqs = fft_freqs[:len(signal)//2] positive_magnitude = np.abs(fft_values[:len(signal)//2]) * 2 / len(signal) # Plot the result plt.figure(figsize=(10, 4)) plt.plot(positive_freqs, positive_magnitude) plt.title("FFT of Composite Signal (40 Hz + 120 Hz)") plt.xlabel("Frequency (Hz)") plt.ylabel("Amplitude") plt.grid(True) plt.show()
copy

1. What does the Fourier Transform reveal about a signal?

2. How does the FFT differ from the continuous Fourier Transform?

3. Why is frequency analysis important in electrical engineering?

question mark

What does the Fourier Transform reveal about a signal?

Select the correct answer

question mark

How does the FFT differ from the continuous Fourier Transform?

Select the correct answer

question mark

Why is frequency analysis important in electrical engineering?

Select the correct answer

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 2

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

bookFourier Transform and Frequency Analysis

Svep för att visa menyn

Understanding the frequency content of signals is a fundamental skill for any electrical engineer. The Fourier Transform is a powerful mathematical tool that allows you to decompose a time-domain signal into its constituent frequency components. This transformation reveals which frequencies are present in a signal and with what amplitudes, making it essential for analyzing and processing signals in communication systems, audio engineering, and instrumentation. In practical terms, the Fourier Transform helps you identify periodicities, detect unwanted noise, and design filters that target specific frequency bands. By leveraging python, you can efficiently perform frequency analysis on sampled signals and visualize the results for deeper insight.

12345678910111213141516171819202122232425262728
import numpy as np import matplotlib.pyplot as plt # Parameters for the sine wave fs = 1000 # Sampling frequency (Hz) t = np.linspace(0, 1, fs, endpoint=False) # 1 second of data f = 50 # Frequency of the sine wave (Hz) amplitude = 1.0 # Generate the sine wave signal = amplitude * np.sin(2 * np.pi * f * t) # Compute FFT fft_values = np.fft.fft(signal) fft_freqs = np.fft.fftfreq(len(signal), 1/fs) # Take the positive frequency part positive_freqs = fft_freqs[:len(signal)//2] positive_magnitude = np.abs(fft_values[:len(signal)//2]) * 2 / len(signal) # Plot the result plt.figure(figsize=(10, 4)) plt.plot(positive_freqs, positive_magnitude) plt.title("FFT of a 50 Hz Sine Wave") plt.xlabel("Frequency (Hz)") plt.ylabel("Amplitude") plt.grid(True) plt.show()
copy

Step-by-step explanation of FFT computation and spectrum interpretation

To understand how the Fast Fourier Transform (FFT) works, start by sampling your signal at a fixed rate, such as 1000 Hz. The FFT algorithm efficiently computes the discrete Fourier Transform (DFT) of this sampled data, converting it from the time domain into the frequency domain. The result is a set of complex numbers that represent the amplitude and phase of each frequency component present in the original signal. By taking the magnitude of these complex values, you obtain the amplitude spectrum, which shows how much of each frequency exists in the signal. The x-axis of the resulting plot represents frequency in Hertz, while the y-axis shows amplitude. Peaks in the spectrum indicate dominant frequencies in the original signal. For a pure sine wave at 50 Hz, you will see a sharp peak at 50 Hz, confirming the frequency content of the signal.

123456789101112131415161718192021222324252627282930
import numpy as np import matplotlib.pyplot as plt # Parameters for composite signal fs = 1000 # Sampling frequency (Hz) t = np.linspace(0, 1, fs, endpoint=False) # 1 second of data f1 = 40 # Frequency of first sine wave (Hz) f2 = 120 # Frequency of second sine wave (Hz) amp1 = 1.0 amp2 = 0.5 # Generate composite signal signal = amp1 * np.sin(2 * np.pi * f1 * t) + amp2 * np.sin(2 * np.pi * f2 * t) # Compute FFT fft_values = np.fft.fft(signal) fft_freqs = np.fft.fftfreq(len(signal), 1/fs) # Take the positive frequency part positive_freqs = fft_freqs[:len(signal)//2] positive_magnitude = np.abs(fft_values[:len(signal)//2]) * 2 / len(signal) # Plot the result plt.figure(figsize=(10, 4)) plt.plot(positive_freqs, positive_magnitude) plt.title("FFT of Composite Signal (40 Hz + 120 Hz)") plt.xlabel("Frequency (Hz)") plt.ylabel("Amplitude") plt.grid(True) plt.show()
copy

1. What does the Fourier Transform reveal about a signal?

2. How does the FFT differ from the continuous Fourier Transform?

3. Why is frequency analysis important in electrical engineering?

question mark

What does the Fourier Transform reveal about a signal?

Select the correct answer

question mark

How does the FFT differ from the continuous Fourier Transform?

Select the correct answer

question mark

Why is frequency analysis important in electrical engineering?

Select the correct answer

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 2
some-alt