Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Replace Categorical Missing Data with Values | Data Cleaning
Preprocessing Data
course content

Kursinnehåll

Preprocessing Data

Preprocessing Data

1. Data Exploration
2. Data Cleaning
3. Data Validation
4. Normalization & Standardization
5. Data Encoding

book
Replace Categorical Missing Data with Values

To deal with categorical data:

  • replace with some constant or the most popular value
  • create a new category for these values. -process the data after converting it to the numerical. We'll use this approach later.

Let's explore for each column Cabin and Embarked(these columns contain NaNs) and figure out how to proceed with the NaNs.

Uppgift

Swipe to start coding

  1. Explore the share of NaNs for each of the given columns. Print these values.
  2. For Embarked column, simply drop the missing values, since there are only 2 rows containing it.
  3. For the Cabin, about 77% of data is missing (if everything is done correct). That's why we'll replace NaNs with some new value. To do that:
  • print all the unique values for the Cabin column.
  • choose any other vlaue except already presented in the Cabin column and replace all NaNs with it. (For example, it can be 'Z' or 'X').

Check some data samples to see the modified dataframe.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 5
toggle bottom row

book
Replace Categorical Missing Data with Values

To deal with categorical data:

  • replace with some constant or the most popular value
  • create a new category for these values. -process the data after converting it to the numerical. We'll use this approach later.

Let's explore for each column Cabin and Embarked(these columns contain NaNs) and figure out how to proceed with the NaNs.

Uppgift

Swipe to start coding

  1. Explore the share of NaNs for each of the given columns. Print these values.
  2. For Embarked column, simply drop the missing values, since there are only 2 rows containing it.
  3. For the Cabin, about 77% of data is missing (if everything is done correct). That's why we'll replace NaNs with some new value. To do that:
  • print all the unique values for the Cabin column.
  • choose any other vlaue except already presented in the Cabin column and replace all NaNs with it. (For example, it can be 'Z' or 'X').

Check some data samples to see the modified dataframe.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 5
Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Vi beklagar att något gick fel. Vad hände?
some-alt