Challenge: Isolation Forest Implementation
Uppgift
Swipe to start coding
You are given a 2D dataset containing normal points and a few outliers. Your goal is to train an Isolation Forest model to detect anomalies, compute anomaly scores, and flag potential outliers.
Steps:
- Import and initialize
IsolationForestfromsklearn.ensemble. - Fit the model on the dataset
X. - Compute anomaly scores using
decision_function(X). - Predict labels using
.predict(X)— note:1→ inlier-1→ outlier
- Print the number of detected outliers and show example scores.
- Use parameters:
contamination=0.15,random_state=42, andn_estimators=100.
Lösning
Var allt tydligt?
Tack för dina kommentarer!
Avsnitt 3. Kapitel 4
single
Fråga AI
Fråga AI
Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal
Suggested prompts:
Can you explain this in simpler terms?
What are some examples related to this topic?
Where can I learn more about this?
Awesome!
Completion rate improved to 4.55
Challenge: Isolation Forest Implementation
Svep för att visa menyn
Uppgift
Swipe to start coding
You are given a 2D dataset containing normal points and a few outliers. Your goal is to train an Isolation Forest model to detect anomalies, compute anomaly scores, and flag potential outliers.
Steps:
- Import and initialize
IsolationForestfromsklearn.ensemble. - Fit the model on the dataset
X. - Compute anomaly scores using
decision_function(X). - Predict labels using
.predict(X)— note:1→ inlier-1→ outlier
- Print the number of detected outliers and show example scores.
- Use parameters:
contamination=0.15,random_state=42, andn_estimators=100.
Lösning
Var allt tydligt?
Tack för dina kommentarer!
Avsnitt 3. Kapitel 4
single