Regularisation
Regularization is commonly employed when dealing with anomalies to mitigate their undue impact on predictive models. While regularization may not directly identify outliers, its primary role is to reduce the influence of outliers on the model's results.
Instead of explicitly detecting outliers, it focuses on making the model more robust and less sensitive to extreme data points.
Regularisation types
Tack för dina kommentarer!
Fråga AI
Fråga AI
Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal
Awesome!
Completion rate improved to 6.67
Regularisation
Svep för att visa menyn
Regularization is commonly employed when dealing with anomalies to mitigate their undue impact on predictive models. While regularization may not directly identify outliers, its primary role is to reduce the influence of outliers on the model's results.
Instead of explicitly detecting outliers, it focuses on making the model more robust and less sensitive to extreme data points.
Regularisation types
Tack för dina kommentarer!