Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Visualize Feature Impact | Product Experimentation and Hypothesis Testing
Python for Product Managers

bookChallenge: Visualize Feature Impact

Visualizing before-and-after metrics is a powerful way to communicate the impact of a product feature launch. By presenting both sets of data on a single chart, you can clearly show stakeholders how a key metric has changed due to your intervention. Adding clear titles, axis labels, and a legend ensures that your audience immediately understands the story your data tells, making your insights actionable and persuasive.

1234567891011121314151617
import matplotlib.pyplot as plt # Sample data: before and after feature launch metrics = ['Active Users', 'Conversion Rate', 'Avg Session Time'] before = [1200, 0.15, 5.2] after = [1450, 0.19, 6.1] plt.figure(figsize=(8, 5)) plt.plot(metrics, before, marker='o', label='Before Launch') plt.plot(metrics, after, marker='o', label='After Launch') plt.title('Feature Impact on Key Metrics') plt.xlabel('Metric') plt.ylabel('Value') plt.legend() plt.tight_layout() plt.show()
copy
Uppgift

Swipe to start coding

Write a script that visualizes the impact of a feature launch on key product metrics using matplotlib.

  • Plot both before_launch and after_launch metric values on the same chart, using the metrics list for the x-axis.
  • Add a title that summarizes the purpose of the chart.
  • Label the x-axis and y-axis appropriately.
  • Include a legend that distinguishes between before and after the feature launch.

Lösning

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 7
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

Suggested prompts:

Can you explain how to interpret the chart produced by this code?

What other types of visualizations could I use for before-and-after comparisons?

How can I customize the chart to match my company's branding?

close

bookChallenge: Visualize Feature Impact

Svep för att visa menyn

Visualizing before-and-after metrics is a powerful way to communicate the impact of a product feature launch. By presenting both sets of data on a single chart, you can clearly show stakeholders how a key metric has changed due to your intervention. Adding clear titles, axis labels, and a legend ensures that your audience immediately understands the story your data tells, making your insights actionable and persuasive.

1234567891011121314151617
import matplotlib.pyplot as plt # Sample data: before and after feature launch metrics = ['Active Users', 'Conversion Rate', 'Avg Session Time'] before = [1200, 0.15, 5.2] after = [1450, 0.19, 6.1] plt.figure(figsize=(8, 5)) plt.plot(metrics, before, marker='o', label='Before Launch') plt.plot(metrics, after, marker='o', label='After Launch') plt.title('Feature Impact on Key Metrics') plt.xlabel('Metric') plt.ylabel('Value') plt.legend() plt.tight_layout() plt.show()
copy
Uppgift

Swipe to start coding

Write a script that visualizes the impact of a feature launch on key product metrics using matplotlib.

  • Plot both before_launch and after_launch metric values on the same chart, using the metrics list for the x-axis.
  • Add a title that summarizes the purpose of the chart.
  • Label the x-axis and y-axis appropriately.
  • Include a legend that distinguishes between before and after the feature launch.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 7
single

single

some-alt