Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Techniques for Handling Missing Data | Handling Missing and Duplicate Data
Python for Data Cleaning

bookTechniques for Handling Missing Data

When working with real-world datasets, you will often encounter missing values that can hinder your analysis or model performance. Handling missing data is a crucial data cleaning step. There are several strategies you can use to address missing values in your data. The most straightforward approach is to remove rows or columns containing missing values using the dropping method. While this ensures only complete data is used, it can reduce your dataset size and potentially remove valuable information.

Another common technique is to fill missing values with a constant, such as zero or an empty string, which can be useful for categorical or indicator columns. However, this may introduce bias if the constant does not represent the true nature of the missing data.

A more nuanced approach is statistical imputation, where missing values are replaced with statistics calculated from the available data. For numerical columns, you might use the mean or median value of the column. The mean is best suited for columns with a normal (symmetric) distribution, while the median is more robust for skewed distributions or when outliers are present.

12345678910111213141516171819202122232425262728
import pandas as pd # Create a sample DataFrame with missing values data = { "age": [25, None, 30, 22, None], "income": [50000, 60000, None, 52000, 58000] } df = pd.DataFrame(data) # Drop rows with any missing values df_dropped = df.dropna() # Fill missing values with a constant (e.g., 0) df_filled_constant = df.fillna(0) # Impute missing values in 'age' column with the mean df_filled_mean = df.copy() df_filled_mean["age"] = df_filled_mean["age"].fillna(df_filled_mean["age"].mean()) print("Original DataFrame:") print(df) print("\nAfter dropna():") print(df_dropped) print("\nAfter fillna(0):") print(df_filled_constant) print("\nAfter fillna() with mean for 'age':") print(df_filled_mean)
copy

1. What does the pandas dropna() method do by default?

2. Which imputation method is best for numerical columns with a normal distribution?

question mark

What does the pandas dropna() method do by default?

Select the correct answer

question mark

Which imputation method is best for numerical columns with a normal distribution?

Select the correct answer

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 1

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

Awesome!

Completion rate improved to 5.56

bookTechniques for Handling Missing Data

Svep för att visa menyn

When working with real-world datasets, you will often encounter missing values that can hinder your analysis or model performance. Handling missing data is a crucial data cleaning step. There are several strategies you can use to address missing values in your data. The most straightforward approach is to remove rows or columns containing missing values using the dropping method. While this ensures only complete data is used, it can reduce your dataset size and potentially remove valuable information.

Another common technique is to fill missing values with a constant, such as zero or an empty string, which can be useful for categorical or indicator columns. However, this may introduce bias if the constant does not represent the true nature of the missing data.

A more nuanced approach is statistical imputation, where missing values are replaced with statistics calculated from the available data. For numerical columns, you might use the mean or median value of the column. The mean is best suited for columns with a normal (symmetric) distribution, while the median is more robust for skewed distributions or when outliers are present.

12345678910111213141516171819202122232425262728
import pandas as pd # Create a sample DataFrame with missing values data = { "age": [25, None, 30, 22, None], "income": [50000, 60000, None, 52000, 58000] } df = pd.DataFrame(data) # Drop rows with any missing values df_dropped = df.dropna() # Fill missing values with a constant (e.g., 0) df_filled_constant = df.fillna(0) # Impute missing values in 'age' column with the mean df_filled_mean = df.copy() df_filled_mean["age"] = df_filled_mean["age"].fillna(df_filled_mean["age"].mean()) print("Original DataFrame:") print(df) print("\nAfter dropna():") print(df_dropped) print("\nAfter fillna(0):") print(df_filled_constant) print("\nAfter fillna() with mean for 'age':") print(df_filled_mean)
copy

1. What does the pandas dropna() method do by default?

2. Which imputation method is best for numerical columns with a normal distribution?

question mark

What does the pandas dropna() method do by default?

Select the correct answer

question mark

Which imputation method is best for numerical columns with a normal distribution?

Select the correct answer

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 2. Kapitel 1
some-alt