Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Identify Missing Data | Foundations of Data Cleaning
Python for Data Cleaning

bookChallenge: Identify Missing Data

Missing data is a common issue in real-world datasets, where some entries may be absent, incomplete, or recorded as "not available." Before you analyze or model your data, it is essential to identify where these missing values occur. Failing to address missing data can lead to inaccurate results, biased insights, or errors in downstream processing. Recognizing the presence and location of missing values is the first step in ensuring your data is clean and reliable for analysis.

12345678910111213
import pandas as pd import numpy as np # Create a sample DataFrame with missing values data = { "Name": ["Alice", "Bob", "Charlie", "David"], "Age": [25, np.nan, 30, 22], "City": ["New York", "Los Angeles", np.nan, "Chicago"], "Score": [85, 90, np.nan, 88] } df = pd.DataFrame(data) print(df)
copy
Uppgift

Swipe to start coding

Write a function that returns a boolean DataFrame indicating the location of missing values in the provided DataFrame.

  • The function must return a DataFrame of the same shape as the input, where each cell is True if the corresponding value is missing and False otherwise.
  • The function must work for any DataFrame containing missing values.

Lösning

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 3
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

close

Awesome!

Completion rate improved to 5.56

bookChallenge: Identify Missing Data

Svep för att visa menyn

Missing data is a common issue in real-world datasets, where some entries may be absent, incomplete, or recorded as "not available." Before you analyze or model your data, it is essential to identify where these missing values occur. Failing to address missing data can lead to inaccurate results, biased insights, or errors in downstream processing. Recognizing the presence and location of missing values is the first step in ensuring your data is clean and reliable for analysis.

12345678910111213
import pandas as pd import numpy as np # Create a sample DataFrame with missing values data = { "Name": ["Alice", "Bob", "Charlie", "David"], "Age": [25, np.nan, 30, 22], "City": ["New York", "Los Angeles", np.nan, "Chicago"], "Score": [85, 90, np.nan, 88] } df = pd.DataFrame(data) print(df)
copy
Uppgift

Swipe to start coding

Write a function that returns a boolean DataFrame indicating the location of missing values in the provided DataFrame.

  • The function must return a DataFrame of the same shape as the input, where each cell is True if the corresponding value is missing and False otherwise.
  • The function must work for any DataFrame containing missing values.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 1. Kapitel 3
single

single

some-alt