Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lära Challenge: Implement Negative Selection Algorithm | Artificial Immune Systems
Bio-Inspired Algorithms

bookChallenge: Implement Negative Selection Algorithm

Uppgift

Swipe to start coding

In this challenge, you will implement a basic negative selection algorithm (NSA) for anomaly detection.
This algorithm is inspired by the human immune system, which learns to distinguish between self (normal) and non-self (foreign) patterns.

You are given a list of self_patterns representing normal data.
Your task is to implement two core functions:

  1. Generate detectors: in the generate_detectors function, you must:
    • Generate random candidate patterns.
    • Check if the candidate pattern is in the self_set.
    • Only add the candidate to the detectors set if it is not a "self" pattern.
  2. Classify patterns: in the classify_patterns function, you must:
    • Check each pattern from the test_patterns list.
    • If the pattern is in the self_set, classify it as 'self'.
    • Else, if the pattern is in the detector_set, classify it as 'non-self'.
    • Otherwise (if it is not "self" and not in the generated detector list), classify it as 'non-self'.

Lösning

Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 4. Kapitel 4
single

single

Fråga AI

expand

Fråga AI

ChatGPT

Fråga vad du vill eller prova någon av de föreslagna frågorna för att starta vårt samtal

close

Awesome!

Completion rate improved to 6.25

bookChallenge: Implement Negative Selection Algorithm

Svep för att visa menyn

Uppgift

Swipe to start coding

In this challenge, you will implement a basic negative selection algorithm (NSA) for anomaly detection.
This algorithm is inspired by the human immune system, which learns to distinguish between self (normal) and non-self (foreign) patterns.

You are given a list of self_patterns representing normal data.
Your task is to implement two core functions:

  1. Generate detectors: in the generate_detectors function, you must:
    • Generate random candidate patterns.
    • Check if the candidate pattern is in the self_set.
    • Only add the candidate to the detectors set if it is not a "self" pattern.
  2. Classify patterns: in the classify_patterns function, you must:
    • Check each pattern from the test_patterns list.
    • If the pattern is in the self_set, classify it as 'self'.
    • Else, if the pattern is in the detector_set, classify it as 'non-self'.
    • Otherwise (if it is not "self" and not in the generated detector list), classify it as 'non-self'.

Lösning

Switch to desktopByt till skrivbordet för praktisk övningFortsätt där du är med ett av alternativen nedan
Var allt tydligt?

Hur kan vi förbättra det?

Tack för dina kommentarer!

Avsnitt 4. Kapitel 4
single

single

some-alt